Date | November 2016 | Marks available | 4 | Reference code | 16N.1.hl.TZ0.12 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 12 | Adapted from | N/A |
Question
Let ω be one of the non-real solutions of the equation z3=1.
Consider the complex numbers p=1−3i and q=x+(2x+1)i, where x∈R.
Determine the value of
(i) 1+ω+ω2;
(ii) 1+ω*+(ω*)2.
Show that (ω−3ω2)(ω2−3ω)=13.
Find the values of x that satisfy the equation |p|=|q|.
Solve the inequality Re(pq)+8<(Im(pq))2.
Markscheme
(i) METHOD 1
1+ω+ω2=1−ω31−ω=0 A1
as ω≠1 R1
METHOD 2
solutions of 1−ω3=0 are ω=1, ω = −1±√3i2 A1
verification that the sum of these roots is 0 R1
(ii) 1+ω*+(ω*)2=0 A2
[4 marks]
(ω−3ω2)(ω2−3ω)=−3ω4+10ω3−3ω2 M1A1
EITHER
=−3ω2(ω2+ω+1)+13ω3 M1
=−3ω2×0+13×1 A1
OR
=−3ω+10−3ω2=−3(ω2+ω+1)+13 M1
=−3×0+13 A1
OR
substitution by ω=−1±√3i2 in any form M1
numerical values of each term seen A1
THEN
=13 AG
[4 marks]
|p|=|q|⇒√12+32=√x2+(2x+1)2 (M1)(A1)
5x2+4x−9=0 A1
(5x+9)(x−1)=0 (M1)
x=1, x=−95 A1
[5 marks]
pq=(1−3i)(x+(2x+1)i)=(7x+3)+(1−x)i M1A1
Re(pq)+8<(Im(pq))2⇒(7x+3)+8<(1−x)2 M1
⇒x2−9x−10>0 A1
⇒(x+1)(x−10)>0 M1
x<−1, x>10 A1
[6 marks]