User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ2.7
Level HL only Paper 1 Time zone TZ2
Command term Express and Find Question number 7 Adapted from N/A

Question

Consider the complex numbers u=2+3iu=2+3i and v=3+2iv=3+2i.

(a)     Given that 1u+1v=10w1u+1v=10w, express w in the form a+bi, a, bR.

(b)     Find w* and express it in the form reiθ.

Markscheme

(a)     METHOD 1

12+3i+13+2i=23i4+9+32i9+4     M1A1

10w=55i13     A1

w=13055i

=130×5×(1+i)50

w=13+13i     A1

[4 marks]

METHOD 2

12+3i+13+2i=3+2i+2+3i(2+3i)(3+2i)     M1A1

10w=5+5i13i     A1

w10=13i5+5i

w=130i(5+5i)×(55i)(55i)

=650+650i50

=13+13i     A1

[4 marks]

 

(b)     w* =1313i     A1

z=338eπ4i (=132eπ4i)     A1A1

 

Note:     Accept θ=7π4.

     Do not accept answers for θ given in degrees.

 

[3 marks]

 

Total [7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number i=1 ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options