User interface language: English | Español

Date May 2012 Marks available 7 Reference code 12M.1.hl.TZ1.3
Level HL only Paper 1 Time zone TZ1
Command term Find, Hence, and Express Question number 3 Adapted from N/A

Question

If \({z_1} = a + a\sqrt 3 i\) and \({z_2} = 1 - i\), where a is a real constant, express \({z_1}\) and \({z_2}\) in the form \(r\,{\text{cis}}\,\theta \), and hence find an expression for \({\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^6}\) in terms of a and i.

Markscheme

\({z_1} = 2a{\text{cis}}\left( {\frac{\pi }{3}} \right){\text{, }}{z_2} = \sqrt 2 {\text{ cis}}\left( { - \frac{\pi }{4}} \right)\)     M1     A1     A1

EITHER

\({\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^6} = \frac{{{2^6}{a^6}{\text{cis(0)}}}}{{{{\sqrt 2 }^6}{\text{cis}}\left( {\frac{\pi }{2}} \right)}}\left( { = 8{a^6}{\text{cis}}\left( { - \frac{\pi }{2}} \right)} \right)\)     M1     A1     A1

OR

\({\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^6} = {\left( {\frac{{2a}}{{\sqrt 2 }}{\text{cis}}\left( {\frac{{7\pi }}{{12}}} \right)} \right)^6}\)     M1     A1

\( = 8{a^6}{\text{cis}}\left( { - \frac{\pi }{2}} \right)\)     A1

THEN

\( = - 8{a^6}{\text{i}}\)     A1

Note: Accept equivalent angles, in radians or degrees. 

Accept alternate answers without cis e.g. \({\text{ = }}\frac{{8{a^6}}}{{\text{i}}}\)

[7 marks]

Examiners report

Most students had an idea of what to do but were frequently let down in their calculations of the modulus and argument. The most common error was to give the argument of \({z_2}\) as \(\frac{{3\pi }}{4}\), failing to recognise that it should be in the fourth quadrant. There were also errors seen in the algebraic manipulation, in particular forgetting to raise the modulus to the power 6.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number \({\text{i}} = \sqrt { - 1} \) ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options