User interface language: English | Español

Date November 2011 Marks available 7 Reference code 11N.2.hl.TZ0.10
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 10 Adapted from N/A

Question

Given that \(z = \frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} - \frac{{6 + 8{\text{i}}}}{{u + {\text{i}}}}\), find the values of u, u \( \in \mathbb{R}\), such that \(\operatorname{Re} z = \operatorname{Im} z\).

Markscheme

METHOD 1

\(\frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} = \frac{{1 - 3{\text{i}}}}{2}\)     A1

\(\frac{{6 + 8{\text{i}}}}{{u + {\text{i}}}} \times \frac{{u - {\text{i}}}}{{u - {\text{i}}}} = \frac{{6u + 8 + (8u - 6){\text{i}}}}{{{u^2} + 1}}\)     M1A1

\( \Rightarrow \frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} - \frac{{6 + 8u}}{{u + {\text{i}}}} = \frac{1}{2} - \frac{{6u + 8}}{{{u^2} + 1}} - \left( {\frac{3}{2} + \frac{{8u - 6}}{{{u^2} + 1}}} \right){\text{i}}\)

\(\operatorname{Im} z = \operatorname{Re} z\)

\( \Rightarrow \frac{1}{2} - \frac{{6u + 8}}{{{u^2} + 1}} = - \frac{3}{2} - \frac{{8u - 6}}{{{u^2} + 1}}\)     A1

(sketch from gdc, or algebraic method)     (M1)

u = −3; u = 2     A1A1     N2

[7 marks]

METHOD 2

\(\frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} - \frac{{6 + 8{\text{i}}}}{{u + {\text{i}}}} = \frac{{(2 - {\text{i}})(u + {\text{i}}) - (1 + {\text{i}})(6 + 8{\text{i}})}}{{(u - 1) + {\text{i}}(u + 1)}}\)     M1A1

\( = \frac{{(2 - {\text{i}})(u + {\text{i}}) - (1 + {\text{i}})(6 + 8{\text{i}})}}{{(u - 1) + {\text{i}}(u + 1)}} \cdot \frac{{(u - 1) - {\text{i}}(u + 1)}}{{(u - 1) - {\text{i}}(u + 1)}}\)     M1

\( = \frac{{{u^2} - 12u - 15 + {\text{i}}( - 3{u^2} - 16u + 9)}}{{2({u^2} + 1)}}\)     A1

\(\operatorname{Re} z = \operatorname{Im} z \Rightarrow {u^2} - 12u - 15 = - 3{u^2} - 16u + 9\)     M1

u = −3; u = 2     A1A1     N2

[7 marks]

Examiners report

Many candidates failed to access their GDC early enough to avoid huge algebraic manipulations, often carried out with many errors. Some candidates failed to separate and equate the real and imaginary parts of the expression obtained.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number \({\text{i}} = \sqrt { - 1} \) ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options