Date | November 2011 | Marks available | 7 | Reference code | 11N.2.hl.TZ0.10 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
Given that \(z = \frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} - \frac{{6 + 8{\text{i}}}}{{u + {\text{i}}}}\), find the values of u, u \( \in \mathbb{R}\), such that \(\operatorname{Re} z = \operatorname{Im} z\).
Markscheme
METHOD 1
\(\frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} = \frac{{1 - 3{\text{i}}}}{2}\) A1
\(\frac{{6 + 8{\text{i}}}}{{u + {\text{i}}}} \times \frac{{u - {\text{i}}}}{{u - {\text{i}}}} = \frac{{6u + 8 + (8u - 6){\text{i}}}}{{{u^2} + 1}}\) M1A1
\( \Rightarrow \frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} - \frac{{6 + 8u}}{{u + {\text{i}}}} = \frac{1}{2} - \frac{{6u + 8}}{{{u^2} + 1}} - \left( {\frac{3}{2} + \frac{{8u - 6}}{{{u^2} + 1}}} \right){\text{i}}\)
\(\operatorname{Im} z = \operatorname{Re} z\)
\( \Rightarrow \frac{1}{2} - \frac{{6u + 8}}{{{u^2} + 1}} = - \frac{3}{2} - \frac{{8u - 6}}{{{u^2} + 1}}\) A1
(sketch from gdc, or algebraic method) (M1)
u = −3; u = 2 A1A1 N2
[7 marks]
METHOD 2
\(\frac{{2 - {\text{i}}}}{{1 + {\text{i}}}} - \frac{{6 + 8{\text{i}}}}{{u + {\text{i}}}} = \frac{{(2 - {\text{i}})(u + {\text{i}}) - (1 + {\text{i}})(6 + 8{\text{i}})}}{{(u - 1) + {\text{i}}(u + 1)}}\) M1A1
\( = \frac{{(2 - {\text{i}})(u + {\text{i}}) - (1 + {\text{i}})(6 + 8{\text{i}})}}{{(u - 1) + {\text{i}}(u + 1)}} \cdot \frac{{(u - 1) - {\text{i}}(u + 1)}}{{(u - 1) - {\text{i}}(u + 1)}}\) M1
\( = \frac{{{u^2} - 12u - 15 + {\text{i}}( - 3{u^2} - 16u + 9)}}{{2({u^2} + 1)}}\) A1
\(\operatorname{Re} z = \operatorname{Im} z \Rightarrow {u^2} - 12u - 15 = - 3{u^2} - 16u + 9\) M1
u = −3; u = 2 A1A1 N2
[7 marks]
Examiners report
Many candidates failed to access their GDC early enough to avoid huge algebraic manipulations, often carried out with many errors. Some candidates failed to separate and equate the real and imaginary parts of the expression obtained.