User interface language: English | Español

Date May 2008 Marks available 7 Reference code 08M.2.hl.TZ2.9
Level HL only Paper 2 Time zone TZ2
Command term Show that Question number 9 Adapted from N/A

Question

Consider w=zz2+1 where z=x+iy , y0 and z2+10w=zz2+1 where z=x+iy , y0 and z2+10 .

Given that Imw=0Imw=0, show that |z|=1|z|=1.

Markscheme

METHOD 1

Substituting z=x+iyz=x+iy to obtain w=x+yi(x+yi)2+1w=x+yi(x+yi)2+1     (A1)

w=x+yix2y2+1+2xyiw=x+yix2y2+1+2xyi     A1

Use of (x2y2+1+2xyi)(x2y2+1+2xyi) to make the denominator real.     M1

 = (x+yi)(x2y2+12xyi)(x2y2+1)2+4x2y2 = (x+yi)(x2y2+12xyi)(x2y2+1)2+4x2y2     A1

Imw=y(x2y2+1)2x2y(x2y2+1)2+4x2y2Imw=y(x2y2+1)2x2y(x2y2+1)2+4x2y2     (A1)

=y(1x2y2)(x2y2+1)2+4x2y2=y(1x2y2)(x2y2+1)2+4x2y2     A1

Imw=01x2y2=0Imw=01x2y2=0 i.e. |z|=1 as y0|z|=1 as y0     R1AG     N0

[7 marks]

METHOD 2

w(z2+1)=zw(z2+1)=z     (A1)

w(x2y2+1+2ixy)=x+yiw(x2y2+1+2ixy)=x+yi     A1

Equating real and imaginary parts

w(x2y2+1)=x and 2wx=1, y0w(x2y2+1)=x and 2wx=1, y0     M1A1

Substituting w=12xw=12x to give x2y22x+12x=xx2y22x+12x=x     A1

12x(y21)=x212x(y21)=x2 or equivalent     (A1)

x2+y2=1x2+y2=1, i.e. |z|=1 as y0|z|=1 as y0     R1AG

[7 marks]

Examiners report

 

This was a difficult question that troubled most candidates. Most candidates were able to substitute z = x + yi into w but were then unable to make any further meaningful progress. Common errors included not expanding (x+iy)2(x+iy)2 correctly or not using a correct complex conjugate to make the denominator real. A small number of candidates produced correct solutions by using w=1z+z1w=1z+z1.

 

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number i=1i=1 ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options