Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2010 Marks available 7 Reference code 10M.2.hl.TZ2.9
Level HL only Paper 2 Time zone TZ2
Command term Show that Question number 9 Adapted from N/A

Question

Given that z=cosθ+isinθ show that

(a)     Im(zn+1zn)=0, nZ+;

(b)     Re(z1z+1)=0, z1.

Markscheme

(a)     using de Moivre’s theorem

zn+1zn=cosnθ+isinnθ+cosnθisinnθ (=2cosnθ), imaginary part of which is 0     M1A1

so Im(zn+1zn)=0     AG

 

(b)     z1z+1=cosθ+isinθ1cosθ+isinθ+1

=(cosθ1+isinθ)(cosθ+1isinθ)(cosθ+1+isinθ)(cosθ+1isinθ)     M1A1

Note: Award M1 for an attempt to multiply numerator and denominator by the complex conjugate of their denominator.

 

Re(z1z+1)=(cosθ1)(cosθ+1)+sin2θreal denominator     M1A1

Note: Award M1 for multiplying out the numerator.

 

=cos2θ+sin2θ1real denominator     A1

=0     AG

[7 marks] 

Examiners report

Part(a) - The majority either obtained full marks or no marks here.

Part(b) - This question was algebraically complex and caused some candidates to waste their efforts for little credit.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number i=1 ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options