Date | May 2010 | Marks available | 7 | Reference code | 10M.2.hl.TZ2.9 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Show that | Question number | 9 | Adapted from | N/A |
Question
Given that \(z = \cos \theta + {\text{i}}\sin \theta \) show that
(a) \(\operatorname{Im} \left( {{z^n} + \frac{1}{{{z^n}}}} \right) = 0,{\text{ }}n \in {\mathbb{Z}^ + }\);
(b) \(\operatorname{Re} \left( {\frac{{z - 1}}{{z + 1}}} \right) = 0,{\text{ }}z \ne - 1\).
Markscheme
(a) using de Moivre’s theorem
\({z^n} + \frac{1}{{{z^n}}} = \cos n\theta + {\text{i}}\sin n\theta + \cos n\theta - {\text{i}}\sin n\theta {\text{ }}( = 2\cos n\theta )\), imaginary part of which is 0 M1A1
so \(\operatorname{Im} \left( {{z^n} + \frac{1}{{{z^n}}}} \right) = 0\) AG
(b) \(\frac{{z - 1}}{{z + 1}} = \frac{{\cos \theta + {\text{i}}\sin \theta - 1}}{{\cos \theta + {\text{i}}\sin \theta + 1}}\)
\( = \frac{{(\cos \theta - 1 + {\text{i}}\sin \theta )(\cos \theta + 1 - {\text{i}}\sin \theta )}}{{(\cos \theta + 1 + {\text{i}}\sin \theta )(\cos \theta + 1 - {\text{i}}\sin \theta )}}\) M1A1
Note: Award M1 for an attempt to multiply numerator and denominator by the complex conjugate of their denominator.
\( \Rightarrow \operatorname{Re} \left( {\frac{{z - 1}}{{z + 1}}} \right) = \frac{{(\cos \theta - 1)(\cos \theta + 1) + {{\sin }^2}\theta }}{{{\text{real denominator}}}}\) M1A1
Note: Award M1 for multiplying out the numerator.
\( = \frac{{{{\cos }^2}\theta + {{\sin }^2}\theta - 1}}{{{\text{real denominator}}}}\) A1
\( = 0\) AG
[7 marks]
Examiners report
Part(a) - The majority either obtained full marks or no marks here.
Part(b) - This question was algebraically complex and caused some candidates to waste their efforts for little credit.