Processing math: 100%

User interface language: English | Español

Date November 2016 Marks available 6 Reference code 16N.1.hl.TZ0.12
Level HL only Paper 1 Time zone TZ0
Command term Solve Question number 12 Adapted from N/A

Question

Let ω be one of the non-real solutions of the equation z3=1.

Consider the complex numbers p=13i and q=x+(2x+1)i, where xR.

Determine the value of

(i)     1+ω+ω2;

(ii)     1+ω*+(ω*)2.

[4]
a.

Show that (ω3ω2)(ω23ω)=13.

[4]
b.

Find the values of x that satisfy the equation |p|=|q|.

[5]
c.

Solve the inequality Re(pq)+8<(Im(pq))2.

[6]
d.

Markscheme

(i)     METHOD 1

1+ω+ω2=1ω31ω=0    A1

as ω1     R1

METHOD 2

solutions of 1ω3=0 are ω=1, ω = 1±3i2     A1

verification that the sum of these roots is 0     R1

(ii)     1+ω*+(ω*)2=0     A2

[4 marks]

a.

(ω3ω2)(ω23ω)=3ω4+10ω33ω2    M1A1

EITHER

=3ω2(ω2+ω+1)+13ω3    M1

=3ω2×0+13×1    A1

OR

=3ω+103ω2=3(ω2+ω+1)+13    M1

=3×0+13    A1

OR

substitution by ω=1±3i2 in any form     M1

numerical values of each term seen     A1

THEN

=13    AG

[4 marks]

b.

|p|=|q|12+32=x2+(2x+1)2    (M1)(A1)

5x2+4x9=0    A1

(5x+9)(x1)=0    (M1)

x=1, x=95    A1

[5 marks]

c.

pq=(13i)(x+(2x+1)i)=(7x+3)+(1x)i    M1A1

Re(pq)+8<(Im(pq))2(7x+3)+8<(1x)2    M1

x29x10>0    A1

(x+1)(x10)>0    M1

x<1, x>10    A1

[6 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number i=1 ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 38 related questions

View options