Date | November 2009 | Marks available | 5 | Reference code | 09N.1.hl.TZ0.2 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 2 | Adapted from | N/A |
Question
Find the values of n such that \({\left( {1 + \sqrt 3 {\text{i}}} \right)^n}\) is a real number.
Markscheme
EITHER
changing to modulus-argument form
r = 2
\(\theta = \arctan \sqrt 3 = \frac{\pi }{3}\) (M1)A1
\( \Rightarrow 1 + {\sqrt 3 ^n} = {2^n}\left( {\cos \frac{{n\pi }}{3} + {\text{i}}\sin \frac{{n\pi }}{3}} \right)\) M1
if \(\sin \frac{{n\pi }}{3} = 0 \Rightarrow n = \{ 0,{\text{ }} \pm 3,{\text{ }} \pm 6,{\text{ }} \ldots \} {\text{ }}\) (M1)A1 N2
OR
\(\theta = \arctan \sqrt 3 = \frac{\pi }{3}\) (M1)(A1)
M1
\(n \in \mathbb{R} \Rightarrow \frac{{n\pi }}{3} = k\pi ,{\text{ }}k \in \mathbb{Z}\) M1
\( \Rightarrow n = 3k,{\text{ }}k \in \mathbb{Z}\) A1 N2
[5 marks]
Examiners report
Some candidates did not consider changing the number to modulus-argument form. Among those that did this successfully, many considered individual values of n, or only positive values. Very few candidates considered negative multiples of 3.