User interface language: English | Español

Date November 2009 Marks available 5 Reference code 09N.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

Find the values of n such that \({\left( {1 + \sqrt 3 {\text{i}}} \right)^n}\) is a real number.

Markscheme

EITHER

changing to modulus-argument form

r = 2

\(\theta  = \arctan \sqrt 3  = \frac{\pi }{3}\)     (M1)A1

\( \Rightarrow 1 + {\sqrt 3 ^n} = {2^n}\left( {\cos \frac{{n\pi }}{3} + {\text{i}}\sin \frac{{n\pi }}{3}} \right)\)     M1

if \(\sin \frac{{n\pi }}{3} = 0 \Rightarrow n = \{ 0,{\text{ }} \pm 3,{\text{ }} \pm 6,{\text{ }} \ldots \} {\text{ }}\)     (M1)A1     N2

OR

\(\theta = \arctan \sqrt 3 = \frac{\pi }{3}\)     (M1)(A1)

    M1

 

\(n \in \mathbb{R} \Rightarrow \frac{{n\pi }}{3} = k\pi ,{\text{ }}k \in \mathbb{Z}\)     M1

\( \Rightarrow n = 3k,{\text{ }}k \in \mathbb{Z}\)     A1     N2

[5 marks]

Examiners report

Some candidates did not consider changing the number to modulus-argument form. Among those that did this successfully, many considered individual values of n, or only positive values. Very few candidates considered negative multiples of 3.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number \({\text{i}} = \sqrt { - 1} \) ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options