Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2008 Marks available 5 Reference code 08M.1.hl.TZ1.1
Level HL only Paper 1 Time zone TZ1
Command term Express Question number 1 Adapted from N/A

Question

Express 1(1i3)3 in the form ab where a, bZ .

Markscheme

METHOD 1

r=2, θ=π3     (A1)(A1)

    M1

= \frac{1}{8}(\cos \pi  + {\text{i}}\sin \pi )     (M1)

= - \frac{1}{8}     A1

[5 marks]

METHOD 2

(1 - \sqrt 3 {\text{i}})(1 - \sqrt 3 {\text{i}}) = 1 - 2\sqrt 3 {\text{i}} - 3\,\,\,\,\,( = - 2 - 2\sqrt 3 {\text{i}})     (M1)A1

( - 2 - 2\sqrt 3 {\text{i}})(1 - \sqrt 3 {\text{i}}) = - 8     (M1)(A1)

\therefore \frac{1}{{{{(1 - \sqrt 3 {\text{i}})}^3}}} = - \frac{1}{8}     A1

[5 marks]

METHOD 3

Attempt at Binomial expansion     M1

{(1 - \sqrt 3 {\text{i}})^3} = 1 + 3( - \sqrt 3 {\text{i}}) + 3{( - \sqrt 3 {\text{i}})^2} + {( - \sqrt 3 {\text{i}})^3}     (A1)

= 1 - 3\sqrt 3 {\text{i}} - 9 + 3\sqrt 3 {\text{i}}     (A1)

= - 8     A1

\therefore \frac{1}{{{{(1 - \sqrt 3 {\text{i}})}^3}}} = - \frac{1}{8}     M1

[5 marks]

Examiners report

Most candidates made a meaningful attempt at this question using a variety of different, but correct methods. Weaker candidates sometimes made errors with the manipulation of the square roots, but there were many fully correct solutions.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number {\text{i}} = \sqrt { - 1} ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options