User interface language: English | Español

Date May 2008 Marks available 5 Reference code 08M.1.hl.TZ1.1
Level HL only Paper 1 Time zone TZ1
Command term Express Question number 1 Adapted from N/A

Question

Express \(\frac{1}{{{{(1 - {\text{i}}\sqrt 3 )}^3}}}{\text{ in the form }}\frac{a}{b}{\text{ where }}a,{\text{ }}b \in \mathbb{Z}\) .

Markscheme

METHOD 1

\(r = 2,{\text{ }}\theta = - \frac{\pi }{3}\)     (A1)(A1)

\(\therefore {(1 - {\text{i}}\sqrt 3 )^{ - 3}} = {2^{ - 3}}{\left( {\cos \left( { - \frac{\pi }{3}} \right) + {\text{i}}\sin \left( { - \frac{\pi }{3}} \right)} \right)^{ - 3}}\)     M1

\( = \frac{1}{8}(\cos \pi  + {\text{i}}\sin \pi )\)     (M1)

\( = - \frac{1}{8}\)     A1

[5 marks]

METHOD 2

\((1 - \sqrt 3 {\text{i}})(1 - \sqrt 3 {\text{i}}) = 1 - 2\sqrt 3 {\text{i}} - 3\,\,\,\,\,( = - 2 - 2\sqrt 3 {\text{i}})\)     (M1)A1

\(( - 2 - 2\sqrt 3 {\text{i}})(1 - \sqrt 3 {\text{i}}) = - 8\)     (M1)(A1)

\(\therefore \frac{1}{{{{(1 - \sqrt 3 {\text{i}})}^3}}} = - \frac{1}{8}\)     A1

[5 marks]

METHOD 3

Attempt at Binomial expansion     M1

\({(1 - \sqrt 3 {\text{i}})^3} = 1 + 3( - \sqrt 3 {\text{i}}) + 3{( - \sqrt 3 {\text{i}})^2} + {( - \sqrt 3 {\text{i}})^3}\)     (A1)

\( = 1 - 3\sqrt 3 {\text{i}} - 9 + 3\sqrt 3 {\text{i}}\)     (A1)

\( = - 8\)     A1

\(\therefore \frac{1}{{{{(1 - \sqrt 3 {\text{i}})}^3}}} = - \frac{1}{8}\)     M1

[5 marks]

Examiners report

Most candidates made a meaningful attempt at this question using a variety of different, but correct methods. Weaker candidates sometimes made errors with the manipulation of the square roots, but there were many fully correct solutions.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number \({\text{i}} = \sqrt { - 1} \) ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 33 related questions

View options