Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.2.hl.TZ2.10
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 10 Adapted from N/A

Question

A continuous random variable X has probability density function f given by

f(x)={x2a+b,0

It is given that {\text{P}}(X \geqslant 2) = 0.75.

Eight independent observations of X are now taken and the random variable Y is the number of observations such that X \geqslant 2.

Show that a = 32 and b = \frac{1}{{12}}.

[5]
a.

Find {\text{E}}(X).

[2]
b.

Find {\text{Var}}(X).

[2]
c.

Find the median of X.

[3]
d.

Find {\text{E}}(Y).

[2]
e.

Find {\text{P}}(Y \geqslant 3).

[1]
f.

Markscheme

\int\limits_0^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 1 \Rightarrow \left[ {\frac{{{x^3}}}{{3a}} + bx} \right]_0^4 = 1 \Rightarrow \frac{{64}}{{3a}} + 4b = 1}     M1A1

\int\limits_2^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 0.75 \Rightarrow \frac{{56}}{{3a}} + 2b = 0.75}     M1A1

 

Note:    \int\limits_0^2 {\left( {\frac{{{x^2}}}{a} + b} \right)} \,dx = 0.25 \Rightarrow \frac{8}{{3a}} + 2b = 0.25 could be seen/used in place of either of the above equations.

 

evidence of an attempt to solve simultaneously (or check given a,b values are consistent)     M1

a = 32,{\text{ }}b = \frac{1}{{12}}     AG

[5 marks]

a.

{\text{E}}\left( X \right) = \int\limits_0^4 {x\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x}     (M1)

{\text{E}}(X) = \frac{8}{3}\,\,\,( = 2.67)     A1

[2 marks]

b.

{\text{E}}\left( {{X^2}} \right) = \int\limits_0^4 {{x^2}\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x}      (M1)

{\text{Var}}(X) = {\text{E}}({X^2}) - {[{\text{E}}(X)]^2} = \frac{{16}}{{15}}\,\,\,( = 1.07)     A1

[2 marks]

c.

\int\limits_0^m {\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x = 0.5}     (M1)

\frac{{{m^3}}}{{96}} + \frac{m}{{12}} = 0.5\,\,\,( \Rightarrow {m^3} + 8m - 48 = 0)     (A1)

m = 2.91     A1

[3 marks]

d.

Y \sim B(8,{\text{ }}0.75)     (M1)

{\text{E}}(Y) = 8 \times 0.75 = 6     A1

[2 marks]

e.

{\text{P}}(Y \geqslant 3) = 0.996     A1

[1 mark]

f.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5
Show 61 related questions

View options