Date | May 2017 | Marks available | 3 | Reference code | 17M.2.hl.TZ2.10 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
A continuous random variable X has probability density function f given by
f(x)={x2a+b,0⩽
It is given that {\text{P}}(X \geqslant 2) = 0.75.
Eight independent observations of X are now taken and the random variable Y is the number of observations such that X \geqslant 2.
Show that a = 32 and b = \frac{1}{{12}}.
Find {\text{E}}(X).
Find {\text{Var}}(X).
Find the median of X.
Find {\text{E}}(Y).
Find {\text{P}}(Y \geqslant 3).
Markscheme
\int\limits_0^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 1 \Rightarrow \left[ {\frac{{{x^3}}}{{3a}} + bx} \right]_0^4 = 1 \Rightarrow \frac{{64}}{{3a}} + 4b = 1} M1A1
\int\limits_2^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 0.75 \Rightarrow \frac{{56}}{{3a}} + 2b = 0.75} M1A1
Note: \int\limits_0^2 {\left( {\frac{{{x^2}}}{a} + b} \right)} \,dx = 0.25 \Rightarrow \frac{8}{{3a}} + 2b = 0.25 could be seen/used in place of either of the above equations.
evidence of an attempt to solve simultaneously (or check given a,b values are consistent) M1
a = 32,{\text{ }}b = \frac{1}{{12}} AG
[5 marks]
{\text{E}}\left( X \right) = \int\limits_0^4 {x\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x} (M1)
{\text{E}}(X) = \frac{8}{3}\,\,\,( = 2.67) A1
[2 marks]
{\text{E}}\left( {{X^2}} \right) = \int\limits_0^4 {{x^2}\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x} (M1)
{\text{Var}}(X) = {\text{E}}({X^2}) - {[{\text{E}}(X)]^2} = \frac{{16}}{{15}}\,\,\,( = 1.07) A1
[2 marks]
\int\limits_0^m {\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x = 0.5} (M1)
\frac{{{m^3}}}{{96}} + \frac{m}{{12}} = 0.5\,\,\,( \Rightarrow {m^3} + 8m - 48 = 0) (A1)
m = 2.91 A1
[3 marks]
Y \sim B(8,{\text{ }}0.75) (M1)
{\text{E}}(Y) = 8 \times 0.75 = 6 A1
[2 marks]
{\text{P}}(Y \geqslant 3) = 0.996 A1
[1 mark]