Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.1.hl.TZ0.4
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 4 Adapted from N/A

Question

The continuous variable X has probability density function

f(x)={12x2(1x),0

Determine {\text{E}}(X) .

[3]
a.

Determine the mode of X .

[3]
b.

Markscheme

{\text{E}}(X) = \int_0^1 {12{x^3}(1 - x){\text{d}}x}     M1

= 12\left[ {\frac{{{x^4}}}{4} - \frac{{{x^5}}}{5}} \right]_0^1     A1

= \frac{3}{5}     A1

[3 marks]

a.

f'(x) = 12(2x - 3{x^2})     A1

at the mode f'(x) = 12(2x - 3{x^2}) = 0     M1

therefore the mode = \frac{2}{3}     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Concept of discrete and continuous random variables and their probability distributions.

View options