Date | May 2017 | Marks available | 4 | Reference code | 17M.1.hl.TZ1.10 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
The continuous random variable X has a probability density function given by
\(f(x) = \left\{ {\begin{array}{*{20}{l}}
{k\sin \left( {\frac{{\pi x}}{6}} \right),}&{0 \leqslant x \leqslant \,6} \\
{0,}&{{\text{otherwise}}}
\end{array}} \right.\).
Find the value of \(k\).
By considering the graph of f write down the mean of \(X\);
By considering the graph of f write down the median of \(X\);
By considering the graph of f write down the mode of \(X\).
Show that \(P(0 \leqslant X \leqslant 2) = \frac{1}{4}\).
Hence state the interquartile range of \(X\).
Calculate \(P(X \leqslant 4|X \geqslant 3)\).
Markscheme
attempt to equate integral to 1 (may appear later) M1
\(k\int\limits_0^6 {\sin \left( {\frac{{\pi x}}{6}} \right){\text{d}}x = 1} \)
correct integral A1
\(k\left[ { - \frac{6}{\pi }\cos \left( {\frac{{\pi x}}{6}} \right)} \right]_0^6 = 1\)
substituting limits M1
\( - \frac{6}{\pi }( - 1 - 1) = \frac{1}{k}\)
\(k = \frac{\pi }{{12}}\) A1
[4 marks]
mean \( = 3\) A1
Note: Award A1A0A0 for three equal answers in \((0,{\text{ }}6)\).
[1 mark]
median \( = 3\) A1
Note: Award A1A0A0 for three equal answers in \((0,{\text{ }}6)\).
[1 mark]
mode \( = 3\) A1
Note: Award A1A0A0 for three equal answers in \((0,{\text{ }}6)\).
[1 mark]
\(\frac{\pi }{{12}}\int\limits_0^2 {\sin } \left( {\frac{{\pi x}}{6}} \right){\text{d}}x\) M1
\( = \frac{\pi }{{12}}\left[ { - \frac{6}{\pi }\cos \left( {\frac{{\pi x}}{6}} \right)} \right]_0^2\) A1
Note: Accept without the \(\frac{\pi }{{12}}\) at this stage if it is added later.
\(\frac{\pi }{{12}}\left[ { - \frac{6}{\pi }\left( {\cos \frac{\pi }{3} - 1} \right)} \right]\) M1
\( = \frac{1}{4}\) AG
[4 marks]
from (c)(i) \({Q_1} = 2\) (A1)
as the graph is symmetrical about the middle value \(x = 3 \Rightarrow {Q_3} = 4\) (A1)
so interquartile range is
\(4 - 2\)
\( = 2\) A1
[3 marks]
\(P(X \leqslant 4|X \geqslant 3) = \frac{{P(3 \leqslant X \leqslant 4)}}{{P(X \geqslant 3)}}\)
\( = \frac{{\frac{1}{4}}}{{\frac{1}{2}}}\) (M1)
\( = \frac{1}{2}\) A1
[2 marks]