Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.1.hl.TZ1.10
Level HL only Paper 1 Time zone TZ1
Command term State and Hence Question number 10 Adapted from N/A

Question

The continuous random variable X has a probability density function given by

f(x)={ksin(πx6),0.

Find the value of k.

[4]
a.

By considering the graph of f write down the mean of X;

[1]
b.i.

By considering the graph of f write down the median of X;

[1]
b.ii.

By considering the graph of f write down the mode of X.

[1]
b.iii.

Show that P(0 \leqslant X \leqslant 2) = \frac{1}{4}.

[4]
c.i.

Hence state the interquartile range of X.

[2]
c.ii.

Calculate P(X \leqslant 4|X \geqslant 3).

[2]
d.

Markscheme

attempt to equate integral to 1 (may appear later)     M1

k\int\limits_0^6 {\sin \left( {\frac{{\pi x}}{6}} \right){\text{d}}x = 1}

correct integral     A1

k\left[ { - \frac{6}{\pi }\cos \left( {\frac{{\pi x}}{6}} \right)} \right]_0^6 = 1

substituting limits     M1

- \frac{6}{\pi }( - 1 - 1) = \frac{1}{k}

k = \frac{\pi }{{12}} A1

[4 marks]

a.

mean = 3     A1

 

Note:     Award A1A0A0 for three equal answers in (0,{\text{ }}6).

 

[1 mark]

b.i.

median = 3     A1

 

Note:     Award A1A0A0 for three equal answers in (0,{\text{ }}6).

 

[1 mark]

b.ii.

mode = 3     A1

 

Note:     Award A1A0A0 for three equal answers in (0,{\text{ }}6).

 

[1 mark]

b.iii.

\frac{\pi }{{12}}\int\limits_0^2 {\sin } \left( {\frac{{\pi x}}{6}} \right){\text{d}}x    M1

= \frac{\pi }{{12}}\left[ { - \frac{6}{\pi }\cos \left( {\frac{{\pi x}}{6}} \right)} \right]_0^2     A1

 

Note:     Accept without the \frac{\pi }{{12}} at this stage if it is added later.

 

\frac{\pi }{{12}}\left[ { - \frac{6}{\pi }\left( {\cos \frac{\pi }{3} - 1} \right)} \right]     M1

= \frac{1}{4}     AG

[4 marks]

c.i.

from (c)(i) {Q_1} = 2     (A1)

as the graph is symmetrical about the middle value x = 3 \Rightarrow {Q_3} = 4     (A1)

so interquartile range is

4 - 2

= 2     A1

[3 marks]

c.ii.

P(X \leqslant 4|X \geqslant 3) = \frac{{P(3 \leqslant X \leqslant 4)}}{{P(X \geqslant 3)}}

= \frac{{\frac{1}{4}}}{{\frac{1}{2}}}     (M1)

= \frac{1}{2}     A1

[2 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5
Show 61 related questions

View options