Date | May 2014 | Marks available | 13 | Reference code | 14M.2.hl.TZ2.11 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find and Show that | Question number | 11 | Adapted from | N/A |
Question
The probability density function of a random variable X is defined as:
f(x)={axcosx,0,0≤x≤π2,wherea∈Relsewhere
(a) Show that a=2π−2.
(b) Find P(X<π4).
(c) Find:
(i) the mode of X;
(ii) the median of X.
(d) Find P(X<π8|X<π4).
Markscheme
(a) a∫π20xcosxdx=1 (M1)
integrating by parts:
u=x v′=cosx M1
u′=1 v=sinx
∫xcosxdx=xsinx+cosx A1
[xsinx+cosx]π20=π2−1 A1
a=1π2−1 A1
=2π−2 AG
[5 marks]
(b) P(X<π4)=2π−2∫π40xcosxdx=0.460 (M1)A1
Note: Accept 2π−2 (=π√28+√22−1) or equivalent
[2 marks]
(c) (i) mode=0.860 A1
(x-value of a maximum on the graph over the given domain)
(ii) 2π−2∫m0xcosxdx=0.5 (M1)
∫m0xcosxdx=π−24
msinm+cosm−1=π−24 (M1)
median=0.826 A1
Note: Do not accept answers containing additional solutions.
[4 marks]
(d) P(X<π8|X<π4)=P(X<π8)P(X<π4) M1
=0.1299120.459826
=0.283 A1
[2 marks]
Total [13 marks]