Date | May 2014 | Marks available | 13 | Reference code | 14M.2.hl.TZ2.11 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find and Show that | Question number | 11 | Adapted from | N/A |
Question
The probability density function of a random variable X is defined as:
\[f(x) = \left\{ \begin{array}{r}ax\cos x,\\0,\end{array} \right.\begin{array}{*{20}{l}}{0 \le x \le {\textstyle{\pi \over 2}},{\rm{where }}\,a \in \mathbb{R}}\\{{\rm{elsewhere}}}\end{array}\]
(a) Show that \(a = \frac{2}{{\pi - 2}}\).
(b) Find \({\text{P}}\left( {X < \frac{\pi }{4}} \right)\).
(c) Find:
(i) the mode of X;
(ii) the median of X.
(d) Find \({\text{P}}\left( {X < \frac{\pi }{8}|X < \frac{\pi }{4}} \right)\).
Markscheme
(a) \(a\int_0^{\frac{\pi }{2}} {x\cos x{\text{d}}x = 1} \) (M1)
integrating by parts:
\(u = x\) \(v' = \cos x\) M1
\(u' = 1\) \(v = \sin x\)
\(\int {x\cos x{\text{d}}x = x\sin x + \cos x} \) A1
\(\left[ {x\sin x + \cos x} \right]_0^{\frac{\pi }{2}} = \frac{\pi }{2} - 1\) A1
\(a = \frac{1}{{\frac{\pi }{2} - 1}}\) A1
\( = \frac{2}{{\pi - 2}}\) AG
[5 marks]
(b) \({\text{P}}\left( {X < \frac{\pi }{4}} \right) = \frac{2}{{\pi - 2}}\int_0^{\frac{\pi }{4}} {x\cos x{\text{d}}x = 0.460} \) (M1)A1
Note: Accept \(\frac{2}{{\pi - 2}}{\text{ }}\left( { = \frac{{\pi \sqrt 2 }}{8} + \frac{{\sqrt 2 }}{2} - 1} \right)\) or equivalent
[2 marks]
(c) (i) \({\text{mode}} = 0.860\) A1
(x-value of a maximum on the graph over the given domain)
(ii) \(\frac{2}{{\pi - 2}}\int_0^m {x\cos x{\text{d}}x = 0.5} \) (M1)
\(\int_0^m {x\cos x{\text{d}}x = \frac{{\pi - 2}}{4}} \)
\(m\sin m + \cos m - 1 = \frac{{\pi - 2}}{4}\) (M1)
\({\text{median}} = 0.826\) A1
Note: Do not accept answers containing additional solutions.
[4 marks]
(d) \({\text{P}}\left( {X < \frac{\pi }{8}|X < \frac{\pi }{4}} \right) = \frac{{{\text{P}}\left( {X < \frac{\pi }{8}} \right)}}{{{\text{P}}\left( {X < \frac{\pi }{4}} \right)}}\) M1
\( = \frac{{0.129912}}{{0.459826}}\)
\( = 0.283\) A1
[2 marks]
Total [13 marks]