Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 13 Reference code 14M.2.hl.TZ2.11
Level HL only Paper 2 Time zone TZ2
Command term Find and Show that Question number 11 Adapted from N/A

Question

The probability density function of a random variable X is defined as:

 

f(x)={axcosx,0,0xπ2,whereaRelsewhere

 

(a)     Show that a=2π2.

(b)     Find P(X<π4).

(c)     Find:

          (i)     the mode of X;

          (ii)     the median of X.

(d)     Find P(X<π8|X<π4).

Markscheme

(a)     aπ20xcosxdx=1     (M1)

integrating by parts:

u=x     v=cosx     M1

u=1     v=sinx

xcosxdx=xsinx+cosx     A1

[xsinx+cosx]π20=π21     A1

a=1π21     A1

=2π2     AG

[5 marks]

 

(b)     P(X<π4)=2π2π40xcosxdx=0.460     (M1)A1

 

Note:     Accept 2π2 (=π28+221) or equivalent

 

[2 marks]

 

(c)     (i)     mode=0.860     A1

          (x-value of a maximum on the graph over the given domain)

          (ii)     2π2m0xcosxdx=0.5     (M1)

          m0xcosxdx=π24

          msinm+cosm1=π24     (M1)

          median=0.826     A1

 

Note:     Do not accept answers containing additional solutions.

 

[4 marks]

 

(d)     P(X<π8|X<π4)=P(X<π8)P(X<π4)     M1

=0.1299120.459826

=0.283     A1

[2 marks]

 

Total [13 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Definition and use of probability density functions.
Show 25 related questions

View options