Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2011 Marks available 5 Reference code 11N.1.hl.TZ0.10
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 10 Adapted from N/A

Question

A continuous random variable X has the probability density function

f(x)={ksinx,0

Find the value of k.

[2]
a.

Find {\text{E}}(X).

[5]
b.

Find the median of X.

[3]
c.

Markscheme

k\int_0^{\frac{\pi }{2}} {\sin x{\text{d}}x = 1}     M1

k[ - \cos x]_0^{\frac{\pi }{2}} = 1

k = 1     A1

[2 marks]

a.

{\text{E}}(X) = \int_0^{\frac{\pi }{2}} {x\sin x{\text{d}}x}     M1

integration by parts     M1

[ - x\cos x]_0^{\frac{\pi }{2}} + \int_0^{\frac{\pi }{2}} {\cos x{\text{d}}x}     A1A1

= 1     A1

[5 marks]

b.

\int_0^M {\sin x{\text{d}}x}  = \frac{1}{2}     M1

[ - \cos x]_0^M = \frac{1}{2}     A1

\cos M = \frac{1}{2}

M = \frac{\pi }{3}     A1

Note: accept \arccos \frac{1}{2}

 

[3 marks]

c.

Examiners report

 

Most candidates scored maximum marks on this question. A few candidates found k = –1.

 

a.

 

Most candidates scored maximum marks on this question. A few candidates found k = –1.

 

b.

 

Most candidates scored maximum marks on this question. A few candidates found k = –1.

 

c.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Expected value (mean), mode, median, variance and standard deviation.
Show 28 related questions

View options