User interface language: English | Español

Date May 2014 Marks available 21 Reference code 14M.2.hl.TZ1.11
Level HL only Paper 2 Time zone TZ1
Command term Find and Show that Question number 11 Adapted from N/A

Question

A random variable \(X\) has probability density function

\[f(x) = \left\{ \begin{array}{r}ax + b,\\0,\end{array} \right.\begin{array}{*{20}{c}}{2 \le x \le 3}\\{{\rm{ otherwise}}}\end{array},a,b \in \mathbb{R}\]

(a)     Show that \(5a + 2b = 2\).

Let \({\text{E}}(X) = \mu \).

(b)     (i)     Show that \(a = 12\mu  - 30\).

          (ii)     Find a similar expression for b in terms of \(\mu \).

Let the median of the distribution be 2.3.

(c)     (i)     Find the value of \(\mu \).

          (ii)     Find the value of the standard deviation of X.

Markscheme

(a)   \(\int_2^3 {(ax + b){\text{d}}x{\text{ }}( = 1)} \)     M1A1

\(\left[ {\frac{1}{2}a{x^2} + bx} \right]_2^3{\text{ }}( = 1)\)     A1

\(\frac{5}{2}a + b = 1\)     M1

\(5a + 2b = 2\)     AG

[4 marks]

 

(b)     (i)     \(\int_2^3 {\left( {a{x^2} + bx} \right){\text{d}}x{\text{ }}( = \mu )} \)     M1A1

          \(\left[ {\frac{1}{3}a{x^3} + \frac{1}{2}b{x^2}} \right]_2^3{\text{ }}( = \mu )\)     A1

          \(\frac{{19}}{3}a + \frac{5}{2}b = \mu \)     A1

          eliminating b     M1

          eg

          \(\frac{{19}}{3}a + \frac{5}{2}\left( {1 - \frac{5}{2}a} \right) = \mu \)     A1

          \(\frac{1}{{12}}a + \frac{5}{2} = \mu \)

          \(a = 12\mu  - 30\)     AG

 

Note:     Elimination of b could be at different stages.

 

          (ii)     \(b = 1 - \frac{5}{2}(12\mu  - 30)\)

          \( = 76 - 30\mu \)     A1

 

Note:     This solution may be seen in part (i).

 

[7 marks]

 

(c)     (i)     \(\int_2^{2.3} {(ax + b){\text{d}}x{\text{ }}( = 0.5)} \)     (M1)(A1)

          \(\left[ {\frac{1}{2}a{x^2} + bx} \right]_2^{2.3}{\text{ }}( = 0.5)\)

          \(0.645a + 0.3b{\text{ }}( = 0.5)\)     (A1)

          \(0.645(12\mu  - 30) + 0.3(76 - 30\mu ) = 0.5\)     M1

          \(\mu  = 2.34{\text{ }}\left( { = \frac{{295}}{{126}}} \right)\)     A1

          (ii)     \({\text{E}}\left( {{X^2}} \right) = \int_2^3 {{x^2}(ax + b){\text{d}}x} \)     (M1)

          \(a = 12\mu  - 30 =  - \frac{{40}}{{21}},{\text{ }}b = 76 - 30\mu  = \frac{{121}}{{21}}\)     (A1)

          \({\text{E}}\left( {{X^2}} \right) = \int_2^3 {{x^2}\left( { - \frac{{40}}{{21}}x + \frac{{121}}{{21}}} \right){\text{d}}x = 5.539 \ldots {\text{ }}\left( { = \frac{{349}}{{63}}} \right)} \)     (A1)

          \({\text{Var}}(X) = 5.539{\text{K}} - {(2.341{\text{K}})^2} = 0.05813 \ldots \)     (M1)

          \(\sigma  = 0.241\)     A1

[10 marks]

 

Total [21 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Definition and use of probability density functions.
Show 25 related questions

View options