User interface language: English | Español

Date May 2017 Marks available 5 Reference code 17M.2.hl.TZ2.10
Level HL only Paper 2 Time zone TZ2
Command term Show that Question number 10 Adapted from N/A

Question

A continuous random variable \(X\) has probability density function \(f\) given by

\(f(x) = \left\{ {\begin{array}{*{20}{l}} {\frac{{{x^2}}}{a} + b,}&{0 \leqslant x \leqslant 4} \\ 0&{{\text{otherwise}}} \end{array}} \right.{\text{where }}a{\text{ and }}b{\text{ are positive constants.}}\)

It is given that \({\text{P}}(X \geqslant 2) = 0.75\).

Eight independent observations of \(X\) are now taken and the random variable \(Y\) is the number of observations such that \(X \geqslant 2\).

Show that \(a = 32\) and \(b = \frac{1}{{12}}\).

[5]
a.

Find \({\text{E}}(X)\).

[2]
b.

Find \({\text{Var}}(X)\).

[2]
c.

Find the median of \(X\).

[3]
d.

Find \({\text{E}}(Y)\).

[2]
e.

Find \({\text{P}}(Y \geqslant 3)\).

[1]
f.

Markscheme

\(\int\limits_0^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 1 \Rightarrow \left[ {\frac{{{x^3}}}{{3a}} + bx} \right]_0^4 = 1 \Rightarrow \frac{{64}}{{3a}} + 4b = 1} \)    M1A1

\(\int\limits_2^4 {\left( {\frac{{{x^2}}}{a} + b} \right){\text{d}}x = 0.75 \Rightarrow \frac{{56}}{{3a}} + 2b = 0.75} \)    M1A1

 

Note:    \(\int\limits_0^2 {\left( {\frac{{{x^2}}}{a} + b} \right)} \,dx = 0.25 \Rightarrow \frac{8}{{3a}} + 2b = 0.25\) could be seen/used in place of either of the above equations.

 

evidence of an attempt to solve simultaneously (or check given a,b values are consistent)     M1

\(a = 32,{\text{ }}b = \frac{1}{{12}}\)     AG

[5 marks]

a.

\({\text{E}}\left( X \right) = \int\limits_0^4 {x\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x} \)    (M1)

\({\text{E}}(X) = \frac{8}{3}\,\,\,( = 2.67)\)     A1

[2 marks]

b.

\({\text{E}}\left( {{X^2}} \right) = \int\limits_0^4 {{x^2}\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x} \)     (M1)

\({\text{Var}}(X) = {\text{E}}({X^2}) - {[{\text{E}}(X)]^2} = \frac{{16}}{{15}}\,\,\,( = 1.07)\)     A1

[2 marks]

c.

\(\int\limits_0^m {\left( {\frac{{{x^2}}}{{32}} + \frac{1}{{12}}} \right){\text{d}}x = 0.5} \)    (M1)

\(\frac{{{m^3}}}{{96}} + \frac{m}{{12}} = 0.5\,\,\,( \Rightarrow {m^3} + 8m - 48 = 0)\)     (A1)

\(m = 2.91\)     A1

[3 marks]

d.

\(Y \sim B(8,{\text{ }}0.75)\)     (M1)

\({\text{E}}(Y) = 8 \times 0.75 = 6\)     A1

[2 marks]

e.

\({\text{P}}(Y \geqslant 3) = 0.996\)     A1

[1 mark]

f.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5
Show 61 related questions

View options