User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.1.hl.TZ0.4
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 4 Adapted from N/A

Question

The continuous variable X has probability density function

\[f(x) = \left\{ {\begin{array}{*{20}{c}}
  {12{x^2}(1 - x),}&{0 \leqslant x \leqslant 1} \\
  {0,}&{{\text{otherwise}}{\text{.}}}
\end{array}} \right.\]

Determine \({\text{E}}(X)\) .

[3]
a.

Determine the mode of X .

[3]
b.

Markscheme

\({\text{E}}(X) = \int_0^1 {12{x^3}(1 - x){\text{d}}x} \)     M1

\( = 12\left[ {\frac{{{x^4}}}{4} - \frac{{{x^5}}}{5}} \right]_0^1\)     A1

\( = \frac{3}{5}\)     A1

[3 marks]

a.

\(f'(x) = 12(2x - 3{x^2})\)     A1

at the mode \(f'(x) = 12(2x - 3{x^2}) = 0\)     M1

therefore the mode \( = \frac{2}{3}\)     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Concept of discrete and continuous random variables and their probability distributions.

View options