User interface language: English | Español

Date November 2015 Marks available 2 Reference code 15N.2.hl.TZ0.8
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 8 Adapted from N/A

Question

The continuous random variable \(X\) has the probability distribution function \(f(x) = A\sin \left( {\ln (x)} \right),{\text{ }}1 \le x \le 5\).

Find the value of \(A\) to three decimal places.

[2]
a.

Find the mode of \(X\).

[2]
b.

Find the value \({\text{P}}(X \le 3|X \ge 2)\).

[2]
c.

Markscheme

\(A\int_1^5 {\sin (\ln x){\text{d}}x = 1} \)     (M1)

\(A = 0.323{\text{ (3 dp only)}}\)     A1

[2 marks]

a.

either a graphical approach or \(f'(x) = \frac{{\cos (\ln x)}}{x} = 0\)     (M1)

\(x = 4.81\;\;\;\left( { = {{\text{e}}^{\frac{\pi }{2}}}} \right)\)     A1

 

Note:     Do not award A1FT for a candidate working in degrees.

[2 marks]

b.

\({\text{P}}(X \le 3|X \ge 2) = \frac{{{\text{P}}(2 \le X \le 3)}}{{{\text{P}}(X \ge 2)}}\;\;\;\left( { = \frac{{\int_2^3 {\sin \left( {\ln (x)} \right){\text{d}}x} }}{{\int_2^5 {\sin \left( {\ln (x)} \right){\text{d}}x} }}} \right)\)     (M1)

\( = 0.288\)     A1

 

Note:     Do not award A1FT for a candidate working in degrees.

[2 marks]

Total [6 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Expected value (mean), mode, median, variance and standard deviation.
Show 28 related questions

View options