User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.1.sl.TZ1.13
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 13 Adapted from N/A

Question

A triangular postage stamp, ABC, is shown in the diagram below, such that \({\text{AB}} = 5{\text{ cm}},{\rm{ B\hat AC}} = 34^\circ ,{\rm{ A\hat BC}} = 26^\circ \) and \({\rm{A\hat CB}} = 120^\circ \).

M17/5/MATSD/SP1/ENG/TZ1/13

Find the length of BC.

[3]
a.

Find the area of the postage stamp.

[3]
b.

Markscheme

\(\frac{{{\text{BC}}}}{{\sin 34^\circ }} = \frac{5}{{\sin 120^\circ }}\)     (M1)(A1)

 

Note:     Award (M1) for substituted sine rule formula, (A1) for correct substitutions.

 

\({\text{BC}} = 3.23{\text{ (cm) }}\left( {3.22850 \ldots {\text{ (cm)}}} \right)\)     (A1)     (C3)

[3 marks]

a.

\(\frac{1}{2}(5)(3.22850)\sin 26^\circ \)     (M1)(A1)(ft)

 

Note:     Award (M1) for substituted area of a triangle formula, (A1) for correct substitutions.

 

\( = 3.54{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}\left( {3.53820 \ldots {\text{ }}({\text{c}}{{\text{m}}^2})} \right)\)     (A1)(ft)     (C3)

 

Note:     Follow through from part (a).

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Geometry and trigonometry » 5.3
Show 132 related questions

View options