User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.2.sl.TZ0.5
Level SL only Paper 2 Time zone TZ0
Command term Calculate Question number 5 Adapted from N/A

Question

A farmer owns a plot of land in the shape of a quadrilateral ABCD.

\({\text{AB}} = 105{\text{ m, BC}} = 95{\text{ m, CD}} = 40{\text{ m, DA}} = 70{\text{ m}}\) and angle \({\text{DCB}} = 90^\circ \).

N16/5/MATSD/SP2/ENG/TZ0/05

The farmer wants to divide the land into two equal areas. He builds a fence in a straight line from point B to point P on AD, so that the area of PAB is equal to the area of PBCD.

Calculate

the length of BD;

[2]
a.

the size of angle DAB;

[3]
b.

the area of triangle ABD;

[3]
c.

the area of quadrilateral ABCD;

[2]
d.

the length of AP;

[3]
e.

the length of the fence, BP.

[3]
f.

Markscheme

\(({\text{BD}} = ){\text{ }}\sqrt {{{95}^2} + {{40}^2}} \)    (M1)

 

Note:     Award (M1) for correct substitution into Pythagoras’ theorem.

 

\( = 103{\text{ }}({\text{m}}){\text{ }}\left( {103.077 \ldots ,{\text{ }}25\sqrt {17} } \right)\)    (A1)(G2)

[2 marks]

a.

\(\cos {\rm{B\hat AD}} = \frac{{{{105}^2} + {{70}^2} - {{(103.077 \ldots )}^2}}}{{2 \times 105 \times 70}}\)     (M1)(A1)(ft)

 

Note:     Award (M1) for substitution into cosine rule, (A1)(ft) for their correct substitutions. Follow through from part (a).

 

\(({\rm{B\hat AD}}) = 68.9^\circ {\text{ }}(68.8663 \ldots )\)    (A1)(ft)(G2)

 

Note:     If their 103 used, the answer is \(68.7995 \ldots \)

 

[3 marks]

b.

\(({\text{Area of ABD}} = )\frac{1}{2} \times 105 \times 70 \times \sin (68.8663 \ldots )\)    (M1)(A1)(ft)

 

Notes:     Award (M1) for substitution into the trig form of the area of a triangle formula.

Award (A1)(ft) for their correct substitutions.

Follow through from part (b).

If 68.8° is used the area \( = 3426.28 \ldots {\text{ }}{{\text{m}}^2}\).

 

\( = 3430{\text{ }}{{\text{m}}^2}{\text{ }}(3427.82 \ldots )\)    (A1)(ft)(G2)

[3 marks]

c.

\({\text{area of ABCD}} = \frac{1}{2} \times 40 \times 95 + 3427.82 \ldots \)    (M1)

 

Note:     Award (M1) for correctly substituted area of triangle formula added to their answer to part (c).

 

\( = 5330{\text{ }}{{\text{m}}^2}{\text{ }}(5327.83 \ldots )\)    (A1)(ft)(G2)

[2 marks]

d.

\(\frac{1}{2} \times 105 \times {\text{AP}} \times \sin (68.8663 \ldots ) = 0.5 \times 5327.82 \ldots \)    (M1)(M1)

 

Notes:     Award (M1) for the correct substitution into triangle formula.

Award (M1) for equating their triangle area to half their part (d).

 

\(({\text{AP}} = ){\text{ }}54.4{\text{ }}({\text{m}}){\text{ }}(54.4000 \ldots )\)    (A1)(ft)(G2)

 

Notes:     Follow through from parts (b) and (d).

 

[3 marks]

e.

\({\text{B}}{{\text{P}}^2} = {105^2} + {(54.4000 \ldots )^2} - 2 \times 105 \times (54.4000 \ldots ) \times \cos (68.8663 \ldots )\)    (M1)(A1)(ft)

 

Notes:     Award (M1) for substituted cosine rule formula.

Award (A1)(ft) for their correct substitutions. Accept the exact fraction \(\frac{{53}}{{147}}\) in place of \(\cos (68.8663 \ldots )\).

Follow through from parts (b) and (e).

 

\(({\text{BP}} = ){\text{ }}99.3{\text{ }}({\text{m}}){\text{ }}(99.3252 \ldots )\)    (A1)(ft)(G2)

 

Notes:     If 54.4 and \(\cos (68.9)\) are used the answer is \(99.3567 \ldots \)

 

[3 marks]

f.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 5 - Geometry and trigonometry » 5.3 » Use of the cosine rule: \({a^2} = {b^2} + {c^2} - 2bc\cos A\) ; \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Show 49 related questions

View options