User interface language: English | Español

Date November 2017 Marks available 3 Reference code 17N.2.sl.TZ0.3
Level SL only Paper 2 Time zone TZ0
Command term Calculate Question number 3 Adapted from N/A

Question

Abdallah owns a plot of land, near the river Nile, in the form of a quadrilateral ABCD.

The lengths of the sides are \({\text{AB}} = {\text{40 m, BC}} = {\text{115 m, CD}} = {\text{60 m, AD}} = {\text{84 m}}\) and angle \({\rm{B\hat AD}} = 90^\circ \).

This information is shown on the diagram.

N17/5/MATSD/SP2/ENG/TZ0/03

The formula that the ancient Egyptians used to estimate the area of a quadrilateral ABCD is

\({\text{area}} = \frac{{({\text{AB}} + {\text{CD}})({\text{AD}} + {\text{BC}})}}{4}\).

Abdallah uses this formula to estimate the area of his plot of land.

Show that \({\text{BD}} = 93{\text{ m}}\) correct to the nearest metre.

[2]
a.

Calculate angle \({\rm{B\hat CD}}\).

[3]
b.

Find the area of ABCD.

[4]
c.

Calculate Abdallah’s estimate for the area.

[2]
d.i.

Find the percentage error in Abdallah’s estimate.

[2]
d.ii.

Markscheme

\({\text{B}}{{\text{D}}^2} = {40^2} + {84^2}\)     (M1)

 

Note:     Award (M1) for correct substitution into Pythagoras.

Accept correct substitution into cosine rule.

\({\text{BD}} = 93.0376 \ldots \)     (A1)

\( = 93\)     (AG)

 

Note:     Both the rounded and unrounded value must be seen for the (A1) to be awarded.

 

[2 marks]

a.

\(\cos C = \frac{{{{115}^2} + {{60}^2} - {{93}^2}}}{{2 \times 115 \times 60}}{\text{ }}({93^2} = {115^2} + {60^2} - 2 \times 115 \times 60 \times \cos C)\)     (M1)(A1)

 

Note:     Award (M1) for substitution into cosine formula, (A1) for correct substitutions.

 

\( = 53.7^\circ {\text{ }}(53.6679 \ldots ^\circ )\)     (A1)(G2)

[3 marks]

b.

\(\frac{1}{2}(40)(84) + \frac{1}{2}(115)(60)\sin (53.6679 \ldots )\)     (M1)(M1)(A1)(ft)

 

Note:     Award (M1) for correct substitution into right-angle triangle area. Award (M1) for substitution into area of triangle formula and (A1)(ft) for correct substitution.

 

\( = 4460{\text{ }}{{\text{m}}^2}{\text{ }}(4459.30 \ldots {\text{ }}{{\text{m}}^2})\)     (A1)(ft)(G3)

 

Notes:     Follow through from part (b).

 

[4 marks]

c.

\(\frac{{(40 + 60)(84 + 115)}}{4}\)     (M1)

 

Note:     Award (M1) for correct substitution in the area formula used by ‘Ancient Egyptians’.

 

\( = 4980{\text{ }}{{\text{m}}^2}{\text{ }}(4975{\text{ }}{{\text{m}}^2})\)     (A1)(G2)

 

 

[2 marks]

d.i.

\(\left| {\frac{{4975 - 4459.30 \ldots }}{{4459.30 \ldots }}} \right| \times 100\)     (M1)

 

Notes:     Award (M1) for correct substitution into percentage error formula.

 

\( = 11.6{\text{ }}(\% ){\text{ }}(11.5645 \ldots )\)     (A1)(ft)(G2)

 

Notes:    Follow through from parts (c) and (d)(i).

 

[2 marks]

d.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 5 - Geometry and trigonometry » 5.3 » Use of the sine rule: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Show 42 related questions

View options