User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.2.sl.TZ2.2
Level SL only Paper 2 Time zone TZ2
Command term Calculate Question number 2 Adapted from N/A

Question

A cross-country running course consists of a beach section and a forest section. Competitors run from \({\text{A}}\) to \({\text{B}}\), then from \({\text{B}}\) to \({\text{C}}\) and from \({\text{C}}\) back to \({\text{A}}\).

The running course from \({\text{A}}\) to \({\text{B}}\) is along the beach, while the course from \({\text{B}}\), through \({\text{C}}\) and back to \({\text{A}}\), is through the forest.

The course is shown on the following diagram.



Angle \({\text{ABC}}\) is \(110^\circ\).

It takes Sarah \(5\) minutes and \(20\) seconds to run from \({\text{A}}\) to \({\text{B}}\) at a speed of \(3.8{\text{ m}}{{\text{s}}^{ - 1}}\).

Using ‘distance = speed \( \times \) time’, show that the distance from \({\text{A}}\) to \({\text{B}}\) is \(1220\) metres correct to 3 significant figures.

[2]
a.

The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.

Calculate the speed, in \({\text{m}}{{\text{s}}^{ - 1}}\), that Sarah runs from \({\text{B}}\) to \({\text{C}}\).

[1]
b.

The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.

Calculate the distance, in metres, from \({\mathbf{C}}\) to \({\mathbf{A}}\).

[3]
c.

The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.

Calculate the total distance, in metres, of the cross-country running course.

[2]
d.

The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.

Find the size of angle \({\text{BCA}}\).

[3]
e.

The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.

Calculate the area of the cross-country course bounded by the lines \({\text{AB}}\), \({\text{BC}}\) and \({\text{CA}}\).

[3]
f.

Markscheme

\(3.8 \times 320\)     (A1)

 

Note: Award (A1) for \(320\) or equivalent seen.

 

\( = 1216\)     (A1)

\( = 1220{\text{ (m)}}\)     (AG)

 

Note: Both unrounded and rounded answer must be seen for the final (A1) to be awarded.

 

[2 marks]

a.

\(\frac{{850}}{{303}}{\text{ (m}}{{\text{s}}^{ - 1}}){\text{ (2.81, 2.80528}} \ldots {\text{)}}\)     (A1)(G1)

[1 mark]

b.

\({\text{A}}{{\text{C}}^2} = {1220^2} + {850^2} - 2(1220)(850)\cos 110^\circ \)     (M1)(A1)

 

Note: Award (M1) for substitution into cosine rule formula, (A1) for correct substitutions.

 

\({\text{AC}} = 1710{\text{ (m) (1708.87}} \ldots {\text{)}}\)     (A1)(G2)

 

Notes: Accept \(1705{\text{ }} (1705.33…)\).

 

[3 marks]

c.

\(1220 + 850 + {\text{1708.87}} \ldots \)     (M1)

\( = {\text{3780 (m) (3778.87}} \ldots {\text{)}}\)     (A1)(ft)(G1)

 

Notes: Award (M1) for adding the three sides. Follow through from their answer to part (c). Accept \(3771{\text{ }} (3771.33…)\).

 

[2 marks]

d.

\(\frac{{\sin C}}{{1220}} = \frac{{\sin 110^\circ }}{{{\text{1708.87}} \ldots }}\)     (M1)(A1)(ft)

 

Notes: Award (M1) for substitution into sine rule formula, (A1)(ft) for correct substitutions. Follow through from their part (c).

 

\(C = 42.1^\circ {\text{ (42.1339}} \ldots {\text{)}}\)     (A1)(ft)(G2)

 

Notes: Accept \(41.9^{\circ}, 42.0^{\circ}, 42.2^{\circ}, 42.3^{\circ}\).

 

OR

 

\(\cos C = \frac{{{\text{1708.87}}{ \ldots ^2} + {{850}^2} - {{1220}^2}}}{{2 \times {\text{1708.87}} \ldots  \times 850}}\)     (M1)(A1)(ft)

 

Notes: Award (M1) for substitution into cosine rule formula, (A1)(ft) for correct substitutions. Follow through from their part (c).

 

\(C = 42.1^\circ {\text{ (42.1339}} \ldots {\text{)}}\)     (A1)(ft)(G2)

 

Notes: Accept \(41.2^{\circ}, 41.8^{\circ}, 42.4^{\circ}\).

 

[3 marks]

e.

\(\frac{1}{2} \times 1220 \times 850 \times \sin 110^\circ \)     (M1)(A1)(ft)

OR

\(\frac{1}{2} \times {\text{1708.87}} \ldots  \times 850 \times \sin {\text{42.1339}} \ldots ^\circ \)     (M1)(A1)(ft)

OR

\(\frac{1}{2} \times 1220 \times {\text{1708.87}} \ldots  \times \sin {\text{27.8661}} \ldots ^\circ \)     (M1)(A1)(ft)

 

Note: Award (M1) for substitution into area formula, (A1)(ft) for correct substitution.

 

\( = 487\,000{\text{ }}{{\text{m}}^2}{\text{ (487}}\,{\text{230}} \ldots {\text{ }}{{\text{m}}^2})\)     (A1)(ft)(G2)

 

Notes: The answer is \(487\,000{\text{ }}{{\text{m}}^2}\), units are required.

     Accept \(486\,000{\text{ }}{{\text{m}}^2}{\text{ (485}}\,{\text{633}} \ldots {\text{ }}{{\text{m}}^2})\).

     If workings are not shown and units omitted, award (G1) for \(487\,000{\text{ or }}486\,000\).

     Follow through from parts (c) and (e).

 

[3 marks]

f.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 5 - Geometry and trigonometry » 5.3 » Use of the cosine rule: \({a^2} = {b^2} + {c^2} - 2bc\cos A\) ; \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Show 49 related questions

View options