User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.2.sl.TZ2.6
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 6 Adapted from N/A

Question

At an amusement park, a Ferris wheel with diameter 111 metres rotates at a constant speed. The bottom of the wheel is k metres above the ground. A seat starts at the bottom of the wheel.

The wheel completes one revolution in 16 minutes.

After t minutes, the height of the seat above ground is given by h(t)=61.5+acos(π8t)h(t)=61.5+acos(π8t), for 0 ≤ t ≤ 32.

After 8 minutes, the seat is 117 m above the ground. Find k.

[2]
a.

Find the value of a.

[3]
b.

Find when the seat is 30 m above the ground for the third time.

[3]
c.

Markscheme

valid approach to find k      (M1)

eg   8 minutes is half a turn, + diameter, + 111 = 117

k = 6      A1 N2

[2 marks]

a.

METHOD 1

valid approach      (M1)
eg  maxmin2maxmin2 a = radius

|a|=11762,55.5|a|=11762,55.5     (A1)

a = −55.5      A1 N2

 

METHOD 2

attempt to substitute valid point into equation for f      (M1)
eg  h(0) = 6, h(8) = 117

correct equation      (A1)
eg   6=61.5+acos(π8×0),117=61.5+acos(π8×8),6=61.5+a6=61.5+acos(π8×0),117=61.5+acos(π8×8),6=61.5+a

a = −55.5      A1 N2

[3 marks]

b.

valid approach      (M1)
eg   sketch of h and y=30,h=30,61.555.5cos(π8t)=30,t=2.46307,t=13.5369y=30,h=30,61.555.5cos(π8t)=30,t=2.46307,t=13.5369

18.4630

t = 18.5 (minutes)      A1 N3

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.5 » Solving trigonometric equations in a finite interval, both graphically and analytically.
Show 50 related questions

View options