Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.1.sl.TZ1.10
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 10 Adapted from N/A

Question

The first two terms of an infinite geometric sequence are u1 = 18 and u2 = 12sin2 θ , where 0 < θ < 2π , and θπ.

Find an expression for r in terms of θ.

[2]
a.i.

Find the possible values of r.

[3]
a.ii.

Show that the sum of the infinite sequence is 542+cos(2θ).

[4]
b.

Find the values of θ which give the greatest value of the sum.

[6]
c.

Markscheme

valid approach     (M1)

eg   u2u1,u1u2

r=12sin2θ18(=2sin2θ3)      A1 N2

[2 marks]

a.i.

recognizing that sinθ is bounded      (M1)

eg    0 sin2 θ ≤ 1, −1 ≤ sinθ ≤ 1, −1 < sinθ < 1

0 < r ≤ 23      A2 N3

Note: If working shown, award M1A1 for correct values with incorrect inequality sign(s).
If no working shown, award N1 for correct values with incorrect inequality sign(s).

[3 marks]

a.ii.

correct substitution into formula for infinite sum       A1

eg  1812sin2θ3

evidence of choosing an appropriate rule for cos 2θ (seen anywhere)         (M1)

eg   cos 2θ = 1 − 2 sin2 θ

correct substitution of identity/working (seen anywhere)      (A1)

eg   18123(1cos2θ2),5432(1cos2θ2),1832sin2θ3

correct working that clearly leads to the given answer       A1

eg  18×32+(12sin2θ),543(1cos2θ)

542+cos(2θ)    AG N0

[4 marks]

b.

 

METHOD 1 (using differentiation)

recognizing dSdθ=0 (seen anywhere)       (M1)

finding any correct expression for dSdθ       (A1)

eg  054×(2sin2θ)(2+cos2θ)2,54(2+cos2θ)2(2sin2θ)

correct working       (A1)

eg  sin 2θ = 0

any correct value for sin−1(0) (seen anywhere)       (A1)

eg  0, π, … , sketch of sine curve with x-intercept(s) marked both correct values for 2θ (ignore additional values)      (A1)

2θ π, 3π (accept values in degrees)

both correct answers θ=π2,3π2      A1 N4

Note: Award A0 if either or both correct answers are given in degrees.
Award A0 if additional values are given.

 

METHOD 2 (using denominator)

recognizing when S is greatest      (M1)

eg 2 + cos 2θ is a minimum, 1−r is smallest
correct working      (A1)

eg  minimum value of 2 + cos 2θ is 1, minimum r23

correct working      (A1)

eg  cos2θ=1,23sin2θ=23,sin2θ=1

EITHER (using cos 2θ)

any correct value for cos−1(−1) (seen anywhere)      (A1)

eg  π, 3π, … (accept values in degrees), sketch of cosine curve with x-intercept(s) marked

both correct values for 2θ  (ignore additional values)      (A1)

2θ π, 3π (accept values in degrees)

OR (using sinθ)

sinθ = ±1     (A1)

sin−1(1) = π2 (accept values in degrees) (seen anywhere)      A1

THEN

both correct answers θ=π2,3π2       A1 N4

Note: Award A0 if either or both correct answers are given in degrees.
Award A0 if additional values are given.

[6 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.5 » Solving trigonometric equations in a finite interval, both graphically and analytically.
Show 50 related questions

View options