User interface language: English | Español

Date May 2017 Marks available 7 Reference code 17M.1.sl.TZ2.7
Level SL only Paper 1 Time zone TZ2
Command term Solve Question number 7 Adapted from N/A

Question

Solve \({\log _2}(2\sin x) + {\log _2}(\cos x) =  - 1\), for \(2\pi  < x < \frac{{5\pi }}{2}\).

Markscheme

correct application of \(\log a + \log b = \log ab\)     (A1)

eg\(\,\,\,\,\,\)\({\log _2}(2\sin x\cos x),{\text{ }}\log 2 + \log (\sin x) + \log (\cos x)\)

correct equation without logs     A1

eg\(\,\,\,\,\,\)\(2\sin x\cos x = {2^{ - 1}},{\text{ }}\sin x\cos x = \frac{1}{4},{\text{ }}\sin 2x = \frac{1}{2}\)

recognizing double-angle identity (seen anywhere)     A1

eg\(\,\,\,\,\,\)\(\log (\sin 2x),{\text{ }}2\sin x\cos x = \sin 2x,{\text{ }}\sin 2x = \frac{1}{2}\)

evaluating \({\sin ^{ - 1}}\left( {\frac{1}{2}} \right) = \frac{\pi }{6}{\text{ }}(30^\circ )\)     (A1)

correct working     A1

eg\(\,\,\,\,\,\)\(x = \frac{\pi }{{12}} + 2\pi ,{\text{ }}2x = \frac{{25\pi }}{6},{\text{ }}\frac{{29\pi }}{6},{\text{ }}750^\circ ,{\text{ }}870^\circ ,{\text{ }}x = \frac{\pi }{{12}}\)and \(x = \frac{{5\pi }}{{12}}\), one correct final answer

\(x = \frac{{25\pi }}{{12}},{\text{ }}\frac{{29\pi }}{{12}}\) (do not accept additional values)     A2     N0

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.5 » Solving trigonometric equations in a finite interval, both graphically and analytically.
Show 41 related questions

View options