Date | May 2017 | Marks available | 7 | Reference code | 17M.1.sl.TZ2.7 |
Level | SL only | Paper | 1 | Time zone | TZ2 |
Command term | Solve | Question number | 7 | Adapted from | N/A |
Question
Solve \({\log _2}(2\sin x) + {\log _2}(\cos x) = - 1\), for \(2\pi < x < \frac{{5\pi }}{2}\).
Markscheme
correct application of \(\log a + \log b = \log ab\) (A1)
eg\(\,\,\,\,\,\)\({\log _2}(2\sin x\cos x),{\text{ }}\log 2 + \log (\sin x) + \log (\cos x)\)
correct equation without logs A1
eg\(\,\,\,\,\,\)\(2\sin x\cos x = {2^{ - 1}},{\text{ }}\sin x\cos x = \frac{1}{4},{\text{ }}\sin 2x = \frac{1}{2}\)
recognizing double-angle identity (seen anywhere) A1
eg\(\,\,\,\,\,\)\(\log (\sin 2x),{\text{ }}2\sin x\cos x = \sin 2x,{\text{ }}\sin 2x = \frac{1}{2}\)
evaluating \({\sin ^{ - 1}}\left( {\frac{1}{2}} \right) = \frac{\pi }{6}{\text{ }}(30^\circ )\) (A1)
correct working A1
eg\(\,\,\,\,\,\)\(x = \frac{\pi }{{12}} + 2\pi ,{\text{ }}2x = \frac{{25\pi }}{6},{\text{ }}\frac{{29\pi }}{6},{\text{ }}750^\circ ,{\text{ }}870^\circ ,{\text{ }}x = \frac{\pi }{{12}}\)and \(x = \frac{{5\pi }}{{12}}\), one correct final answer
\(x = \frac{{25\pi }}{{12}},{\text{ }}\frac{{29\pi }}{{12}}\) (do not accept additional values) A2 N0
[7 marks]