User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.2.sl.TZ1.7
Level SL only Paper 2 Time zone TZ1
Command term Hence and Find Question number 7 Adapted from N/A

Question

Let \(f\left( x \right) = {{\text{e}}^{2\,{\text{sin}}\left( {\frac{{\pi x}}{2}} \right)}}\), for x > 0.

The k th maximum point on the graph of f has x-coordinate xk where \(k \in {\mathbb{Z}^ + }\).

Given that xk + 1 = xk + a, find a.

[4]
a.

Hence find the value of n such that \(\sum\limits_{k = 1}^n {{x_k} = 861} \).

[4]
b.

Markscheme

valid approach to find maxima     (M1)

eg  one correct value of xk, sketch of f

any two correct consecutive values of xk      (A1)(A1)

eg  x1 = 1, x2 = 5

a = 4      A1 N3

[4 marks]

a.

recognizing the sequence x1,  x2,  x3, …, xn is arithmetic  (M1)

eg  d = 4

correct expression for sum       (A1)

eg  \(\frac{n}{2}\left( {2\left( 1 \right) + 4\left( {n - 1} \right)} \right)\)

valid attempt to solve for n      (M1)

eg  graph, 2n2n − 861 = 0

n = 21       A1 N2

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Functions and equations » 2.7 » Solving equations, both graphically and analytically.
Show 78 related questions

View options