User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.1.sl.TZ1.4
Level SL only Paper 1 Time zone TZ1
Command term Hence and Solve Question number 4 Adapted from N/A

Question

Write down the value of

(i)     \({\log _3}27\);

[1]
a(i).

(ii)     \({\log _8}\frac{1}{8}\);

[1]
a(ii).

(iii)     \({\log _{16}}4\).

[1]
a(iii).

Hence, solve \({\log _3}27 + {\log _8}\frac{1}{8} - {\log _{16}}4 = {\log _4}x\).

[3]
b.

Markscheme

(i)     \({\log _3}27 = 3\)     A1     N1

[1 mark]

a(i).

(ii)     \({\log _8}\frac{1}{8} =  - 1\)     A1     N1

[1 mark]

a(ii).

(iii)     \({\log _{16}}4 = \frac{1}{2}\)     A1     N1

[1 mark]

a(iii).

correct equation with their three values     (A1)

eg     \(\frac{3}{2} = {\log _4}x{\text{, }}3 + ( - 1) - \frac{1}{2} = {\log _4}x\)

correct working involving powers     (A1)

eg     \(x = {4^{\frac{3}{2}}}{\text{, }}{4^{\frac{3}{2}}} = {4^{{{\log }_4}x}}\)

\(x = 8\)     A1     N2

[3 marks]

b.

Examiners report

[N/A]
a(i).
[N/A]
a(ii).
[N/A]
a(iii).
[N/A]
b.

Syllabus sections

Topic 2 - Functions and equations » 2.7 » Solving equations, both graphically and analytically.
Show 73 related questions

View options