Date | May 2014 | Marks available | 7 | Reference code | 14M.1.sl.TZ1.6 |
Level | SL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 6 | Adapted from | N/A |
Question
Let ∫aπcos2xdx=12, where π<a<2π∫aπcos2xdx=12, where π<a<2π. Find the value of aa.
Markscheme
correct integration (ignore absence of limits and “+C+C”) (A1)
eg sin(2x)2, ∫aπcos2x=[12sin(2x)]aπsin(2x)2, ∫aπcos2x=[12sin(2x)]aπ
substituting limits into their integrated function and subtracting (in any order) (M1)
eg 12sin(2a)−12sin(2π), sin(2π)−sin(2a)12sin(2a)−12sin(2π), sin(2π)−sin(2a)
sin(2π)=0sin(2π)=0 (A1)
setting their result from an integrated function equal to 1212 M1
eg 12sin2a=12, sin(2a)=112sin2a=12, sin(2a)=1
recognizing sin−11=π2sin−11=π2 (A1)
eg 2a=π2, a=π42a=π2, a=π4
correct value (A1)
eg π2+2π, 2a=5π2, a=π4+ππ2+2π, 2a=5π2, a=π4+π
a=5π4a=5π4 A1 N3
[7 marks]