User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.sl.TZ1.6
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 6 Adapted from N/A

Question

Let aπcos2xdx=12, where π<a<2πaπcos2xdx=12, where π<a<2π. Find the value of aa.

Markscheme

correct integration (ignore absence of limits and “+C+C”)     (A1)

eg     sin(2x)2, aπcos2x=[12sin(2x)]aπsin(2x)2, aπcos2x=[12sin(2x)]aπ

substituting limits into their integrated function and subtracting (in any order)     (M1)

eg     12sin(2a)12sin(2π), sin(2π)sin(2a)12sin(2a)12sin(2π), sin(2π)sin(2a)

sin(2π)=0sin(2π)=0     (A1)

setting their result from an integrated function equal to 1212     M1

eg     12sin2a=12, sin(2a)=112sin2a=12, sin(2a)=1

recognizing sin11=π2sin11=π2     (A1)

eg     2a=π2, a=π42a=π2, a=π4

correct value     (A1)

eg     π2+2π, 2a=5π2, a=π4+ππ2+2π, 2a=5π2, a=π4+π

a=5π4a=5π4     A1     N3

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Calculus » 6.5 » Definite integrals, both analytically and using technology.
Show 50 related questions

View options