Date | May 2014 | Marks available | 7 | Reference code | 14M.1.sl.TZ1.6 |
Level | SL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 6 | Adapted from | N/A |
Question
Let \(\int_\pi ^a {\cos 2x{\text{d}}x} = \frac{1}{2}{\text{, where }}\pi < a < 2\pi \). Find the value of \(a\).
Markscheme
correct integration (ignore absence of limits and “\(+C\)”) (A1)
eg \(\frac{{\sin (2x)}}{2},{\text{ }}\int_\pi ^a {\cos 2x = \left[ {\frac{1}{2}\sin (2x)} \right]_\pi ^a} \)
substituting limits into their integrated function and subtracting (in any order) (M1)
eg \(\frac{1}{2}\sin (2a) - \frac{1}{2}\sin (2\pi ),{\text{ }}\sin (2\pi ) - \sin (2a)\)
\(\sin (2\pi ) = 0\) (A1)
setting their result from an integrated function equal to \(\frac{1}{2}\) M1
eg \(\frac{1}{2}\sin 2a = \frac{1}{2},{\text{ }}\sin (2a) = 1\)
recognizing \({\sin ^{ - 1}}1 = \frac{\pi }{2}\) (A1)
eg \(2a = \frac{\pi }{2},{\text{ }}a = \frac{\pi }{4}\)
correct value (A1)
eg \(\frac{\pi }{2} + 2\pi ,{\text{ }}2a = \frac{{5\pi }}{2},{\text{ }}a = \frac{\pi }{4} + \pi \)
\(a = \frac{{5\pi }}{4}\) A1 N3
[7 marks]