Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2011 Marks available 4 Reference code 11N.1.sl.TZ0.10
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 10 Adapted from N/A

Question

Let f(x)=14x2+2  . The line L is the tangent to the curve of f at (4, 6) .

Let g(x)=903x+4 , for 2x12 . The following diagram shows the graph of g .


Find the equation of L .

[4]
a.

Find the area of the region enclosed by the curve of g , the x-axis, and the lines x=2 and x=12 . Give your answer in the form alnb , where a,bZ .

[6]
b.

The graph of g is reflected in the x-axis to give the graph of h . The area of the region enclosed by the lines L , x=2 , x=12 and the x-axis is 120 120 cm2 .

Find the area enclosed by the lines L , x=2 , x=12 and the graph of h .

[3]
c.

Markscheme

finding f(x)=12x     A1

attempt to find f(4)     (M1)

correct value f(4)=2     A1

correct equation in any form     A1     N2

e.g. y6=2(x4) , y=2x2

[4 marks]

a.

area=122903x+4dx

correct integral     A1A1

e.g. 30ln(3x+4)

substituting limits and subtracting     (M1)

e.g. 30ln(3×12+4)30ln(3×2+4) , 30ln4030ln10

correct working     (A1)

e.g. 30(ln40ln10)

correct application of lnblna     (A1)

e.g. 30ln4010

area=30ln4     A1     N4

[6 marks]

b.

valid approach     (M1)

e.g. sketch, area h = area g , 120 + their answer from (b)

area=120+30ln4     A2     N3

[3 marks]

c.

Examiners report

While most candidates answered part (a) correctly, finding the equation of the tangent, there were some who did not consider the value of their derivative when x=4 .

a.

In part (b), most candidates knew that they needed to integrate to find the area, but errors in integration, and misapplication of the rules of logarithms kept many from finding the correct area.

b.

In part (c), it was clear that a significant number of candidates understood the idea of the reflected function, and some recognized that the integral was the negative of the integral from part (b), but only a few recognized the relationship between the areas. Many thought the area between h and the x-axis was 120.

c.

Syllabus sections

Topic 1 - Algebra » 1.2 » Laws of exponents; laws of logarithms.
Show 41 related questions

View options