User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.1.AHL.TZ1.H_2
Level Additional Higher Level Paper Paper 1 Time zone Time zone 1
Command term Find Question number H_2 Adapted from N/A

Question

Let  y = si n 2 θ , 0 θ π .

Find  d y d θ

[2]
a.

Hence find the values of θ for which  d y d θ = 2 y .

[5]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt at chain rule or product rule     (M1)

d y d θ = 2 sin θ cos θ      A1

[2 marks]

a.

2 sin θ cos θ = 2 si n 2 θ

sin θ = 0     (A1)

θ = 0,  π      A1

obtaining cos θ = sin θ     (M1)

tan θ = 1     (M1)

θ = π 4      A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5—Calculus » SL 5.3—Differentiating polynomials, n E Z
Show 146 related questions
Topic 5—Calculus » AHL 5.9—Differentiating standard functions and derivative rules
Topic 5—Calculus

View options