Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.AHL.TZ1.H_2
Level Additional Higher Level Paper Paper 1 Time zone Time zone 1
Command term Find Question number H_2 Adapted from N/A

Question

Let y=sin2θ,0θπ.

Find dydθ

[2]
a.

Hence find the values of θ for which dydθ=2y.

[5]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt at chain rule or product rule     (M1)

dydθ=2sinθcosθ     A1

[2 marks]

a.

2sinθcosθ=2sin2θ

sin θ = 0     (A1)

θ = 0, π     A1

obtaining cos θ = sin θ     (M1)

tan θ = 1     (M1)

θ=π4     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5—Calculus » SL 5.3—Differentiating polynomials, n E Z
Show 146 related questions
Topic 5—Calculus » AHL 5.9—Differentiating standard functions and derivative rules
Topic 5—Calculus

View options