User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.2.AHL.TZ2.H_11
Level Additional Higher Level Paper Paper 2 Time zone Time zone 2
Command term Show that Question number H_11 Adapted from N/A

Question

A curve C is given by the implicit equation  x + y cos ( x y ) = 0 .

The curve  x y = π 2  intersects C at P and Q.

Show that  d y d x = ( 1 + y sin ( x y ) 1 + x sin ( x y ) ) .

[5]
a.

Find the coordinates of P and Q.

[4]
b.i.

Given that the gradients of the tangents to C at P and Q are m1 and m2 respectively, show that m1 × m2 = 1.

[3]
b.ii.

Find the coordinates of the three points on C, nearest the origin, where the tangent is parallel to the line  y = x .

[7]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt at implicit differentiation      M1

1 + d y d x + ( y + x d y d x ) sin ( x y ) = 0      A1M1A1

Note: Award A1 for first two terms. Award M1 for an attempt at chain rule A1 for last term.

( 1 + x sin ( x y ) ) d y d x = 1 y sin ( x y )      A1

d y d x = ( 1 + y sin ( x y ) 1 + x sin ( x y ) )      AG

[5 marks]

a.

EITHER

when  x y = π 2 , cos x y = 0      M1

x + y = 0     (A1)

OR

x π 2 x cos ( π 2 ) = 0  or equivalent      M1

x π 2 x = 0      (A1)

THEN

therefore  x 2 = π 2 ( x = ± π 2 ) ( x = ± 1.25 )      A1

P ( π 2 , π 2 ) , Q ( π 2 , π 2 ) or  P ( 1.25 , 1.25 ) , Q ( 1.25 , 1.25 )      A1

[4 marks]

b.i.

m1 = ( 1 π 2 × 1 1 + π 2 × 1 )      M1A1

m ( 1 + π 2 × 1 1 π 2 × 1 )      A1

mm= 1     AG

Note: Award M1A0A0 if decimal approximations are used.
Note: No FT applies.

[3 marks]

b.ii.

equate derivative to −1    M1

( y x ) sin ( x y ) = 0      (A1)

y = x , sin ( x y ) = 0      R1

in the first case, attempt to solve  2 x = cos ( x 2 )      M1

(0.486,0.486)      A1

in the second case,  sin ( x y ) = 0 x y = 0 and  x + y = 1      (M1)

(0,1), (1,0)      A1

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 5—Calculus » SL 5.1—Introduction of differential calculus
Show 80 related questions
Topic 5—Calculus » SL 5.3—Differentiating polynomials, n E Z
Topic 5—Calculus » SL 5.4—Tangents and normal
Topic 5—Calculus

View options