Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.2.AHL.TZ1.H_2
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Determine Question number H_2 Adapted from N/A

Question

The curve C is defined by equation xylny=1, y>0.

Find dydx in terms of x and y.

[4]
a.

Determine the equation of the tangent to C at the point (2e, e)

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

y+xdydx1ydydx=0     M1A1A1

 

Note:     Award A1 for the first two terms, A1 for the third term and the 0.

 

dydx=y21xy     A1

 

Note:     Accept y2lny.

 

Note:     Accept yx1y.

 

[4 marks]

a.

mT=e21e×2e     (M1)

mT=e2     (A1)

ye=e2x+2e

e2xy+3e=0 or equivalent     A1

 

Note:     Accept y=7.39x+8.15.

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5—Calculus » SL 5.1—Introduction of differential calculus
Show 80 related questions
Topic 5—Calculus » SL 5.3—Differentiating polynomials, n E Z
Topic 5—Calculus » SL 5.4—Tangents and normal
Topic 5—Calculus

View options