User interface language: English | Español

Date May 2019 Marks available 1 Reference code 19M.2.SL.TZ1.S_9
Level Standard Level Paper Paper 2 Time zone Time zone 1
Command term Hence and Write down Question number S_9 Adapted from N/A

Question

Let  f ( x ) = 16 x . The line L  is tangent to the graph of  f at  x = 8 .

L can be expressed in the form r  = ( 8 2 ) + t u.

The direction vector of y = x is  ( 1 1 ) .

Find the gradient of L .

[2]
a.

Find u.

[2]
b.

Find the acute angle between y = x and L .

[5]
c.

Find  ( f f ) ( x ) .

[3]
d.i.

Hence, write down f 1 ( x ) .

[1]
d.ii.

Hence or otherwise, find the obtuse angle formed by the tangent line to f at x = 8 and the tangent line to f at x = 2 .

[3]
d.iii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to find  f ( 8 )      (M1)

eg   f ( x ) ,   y ,   16 x 2

−0.25 (exact)     A1 N2

[2 marks]

a.

u  = ( 4 1 )   or any scalar multiple    A2 N2

[2 marks]

b.

correct scalar product and magnitudes           (A1)(A1)(A1)

scalar product  = 1 × 4 + 1 × 1 ( = 3 )

magnitudes  = 1 2 + 1 2 ,   4 2 + ( 1 ) 2    ( = 2 , 17 )

substitution of their values into correct formula           (M1)

eg  4 1 1 2 + 1 2 4 2 + ( 1 ) 2 3 2 17 ,  2.1112,  120.96° 

1.03037 ,  59.0362°

angle = 1.03 ,  59.0°    A1 N4

[5 marks]

c.

attempt to form composite  ( f f ) ( x )      (M1)

eg    f ( f ( x ) ) ,   f ( 16 x ) ,   16 f ( x )

correct working     (A1)

eg  16 16 x  ,   16 × x 16

( f f ) ( x ) = x      A1 N2

[3 marks]

d.i.

f 1 ( x ) = 16 x   (accept  y = 16 x , 16 x )    A1 N1

Note: Award A0 in part (ii) if part (i) is incorrect.
Award A0 in part (ii) if the candidate has found f 1 ( x ) = 16 x by interchanging x and y .

[1 mark]

d.ii.

METHOD 1

recognition of symmetry about y = x     (M1)

eg   (2, 8) ⇔ (8, 2) 

evidence of doubling their angle        (M1)

eg    2 × 1.03 ,   2 × 59.0

2.06075, 118.072°

2.06 (radians)  (118 degrees)     A1  N2

 

METHOD 2

finding direction vector for tangent line at x = 2       (A1)

eg    ( 1 4 ) ,   ( 1 4 )

substitution of their values into correct formula (must be from vectors)      (M1)

eg    4 4 1 2 + 4 2 4 2 + ( 1 ) 2 ,   8 17 17

2.06075, 118.072°

2.06 (radians)  (118 degrees)     A1  N2

 

METHOD 3

using trigonometry to find an angle with the horizontal      (M1)

eg    tan θ = 1 4 ,   tan θ = 4

finding both angles of rotation      (A1)

eg    θ 1 = 0.244978 ,  14 .0362 ,   θ 1 = 1.81577 ,  104 .036

2.06075, 118.072°

2.06 (radians)  (118 degrees)     A1  N2

[3 marks]

d.iii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.
[N/A]
d.iii.

Syllabus sections

Topic 4—Statistics and probability » SL 4.1—Concepts, reliability and sampling techniques
Show 80 related questions
Topic 2—Functions » SL 2.2—Functions, notation domain, range and inverse as reflection
Topic 5—Calculus » SL 5.3—Differentiating polynomials, n E Z
Topic 2—Functions » AHL 2.7—Composite functions, finding inverse function incl domain restriction
Topic 3—Geometry and trigonometry » AHL 3.11—Vector equation of a line in 2d and 3d
Topic 2—Functions
Topic 3—Geometry and trigonometry
Topic 4—Statistics and probability
Topic 5—Calculus

View options