User interface language: English | Español

Date May 2021 Marks available 5 Reference code 21M.1.AHL.TZ2.8
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find Question number 8 Adapted from N/A

Question

The lines l1 and l2 have the following vector equations where λ, μ.

l1:r1=32-1+λ2-22

l2:r2=204+μ1-11

Show that l1 and l2 do not intersect.

[3]
a.

Find the minimum distance between l1 and l2.

[5]
b.

Markscheme

METHOD 1

setting at least two components of l1 and l2 equal           M1

3+2λ=2+μ      1

2-2λ=-μ        2

-1+2λ=4+μ  3

attempt to solve two of the equations eg. adding 1 and 2           M1

gives a contradiction (no solution), eg 5=2           R1

so l1 and l2 do not intersect                   AG

 

Note: For an error within the equations award M0M1R0.
Note: The contradiction must be correct to award the R1.

 

METHOD 2

l1 and l2 are parallel, so l1 and l2 are either identical or distinct.           R1

Attempt to subtract two position vectors from each line,

e.g. 32-1-204=12-5           M1

32-1k1-11               A1

 

[3 marks]

a.

METHOD 1

l1 and l2 are parallel (as 2-22 is a multiple of 1-11)

let A be 3,2,-1 on l1 and let B be 2,0,4 on l2

Attempt to find vector AB=-1-25            (M1)

Distance required is v×ABv              M1

=131-11×-1-25            (A1)

=13363                    A1

minimum distance is 18=32                    A1

 

METHOD 2

l1 and l2 are parallel (as 2-22 is a multiple of 1-11)

let A be a fixed point on l1 eg 3,2,-1 and let B be a general point on l2 2+μ,-μ,4+μ

attempt to find vector AB            (M1)

AB=-1-25+μ1-11 μ                   A1

AB=-1+μ2+-2-μ2+5+μ2 =3μ2+12μ+30              M1


EITHER

null                   A1


OR

AB=3μ+22+18 to obtain μ=-2                   A1


THEN

minimum distance is 18=32                   A1

 

METHOD 3

let A be 3,2,-1 on l1 and let B be 2+μ,-μ,4+μ on l2              (M1)

(or let A be 2,0,4 on l2 and let B be 3+2λ,2-2λ,-1+2λ on l1)

AB=-1-25+μ1-11 μ  (or AB=2λ+1-2λ+22λ-5)                 A1

μ-1-μ-2μ+5·1-11=0  (or 2λ+1-2λ+22λ-5·1-11=0)              M1

μ=-2  or  λ=1                   A1

minimum distance is 18=32                   A1

 

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry » AHL 3.15—Classification of lines
Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Topic 3— Geometry and trigonometry

View options