User interface language: English | Español

Date November 2017 Marks available 5 Reference code 17N.1.SL.TZ0.S_9
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_9 Adapted from N/A

Question

A line L passes through points A ( 3 ,   4 ,   2 ) and B ( 1 ,   3 ,   3 ) .

The line L also passes through the point C ( 3 ,   1 ,   p ) .

Show that AB = ( 2 1 1 ) .

[1]
a.i.

Find a vector equation for L .

[2]
a.ii.

Find the value of p .

[5]
b.

The point D has coordinates ( q 2 ,   0 ,   q ) . Given that DC is perpendicular to L , find the possible values of q .

[7]
c.

Markscheme

correct approach     A1

 

eg ( 1 3 3 ) ( 3 4 2 ) ,   ( 3 4 2 ) + ( 1 3 3 )

 

AB = ( 2 1 1 )     AG     N0

[1 mark]

a.i.

any correct equation in the form r = a + t b (any parameter for t )

 

where a is  ( 3 4 2 )  or  ( 1 3 3 )  and b is a scalar multiple of  ( 2 1 1 )     A2     N2

 

eg r = ( 3 4 2 ) + t ( 2 1 1 ) ,   ( x ,   y ,   z ) = ( 1 ,   3 ,   3 ) + s ( 2 ,   1 ,   1 ) ,   r = ( 3 + 2 t 4 t 2 + t )

 

Note:     Award A1 for the form a + t b , A1 for the form L = a + t b , A0 for the form r = b + t a .

 

[2 marks]

a.ii.

METHOD 1 – finding value of parameter

valid approach     (M1)

 

eg ( 3 4 2 ) + t ( 2 1 1 ) = ( 3 1 p ) ,   ( 1 ,   3 ,   3 ) + s ( 2 ,   1 ,   1 ) = ( 3 ,   1 ,   p )

 

one correct equation (not involving p )     (A1)

eg 3 + 2 t = 3 ,   1 2 s = 3 ,   4 t = 1 ,   3 + s = 1

correct parameter from their equation (may be seen in substitution)     A1

eg t = 3 ,   s = 2

correct substitution     (A1)

 

eg ( 3 4 2 ) + 3 ( 2 1 1 ) = ( 3 1 p ) ,   3 ( 2 )

 

p = 5 ( accept  ( 3 1 5 ) )     A1     N2

 

METHOD 2 – eliminating parameter

valid approach     (M1)

 

eg ( 3 4 2 ) + t ( 2 1 1 ) = ( 3 1 p ) ,   ( 1 ,   3 ,   3 ) + s ( 2 ,   1 ,   1 ) = ( 3 ,   1 ,   p )

 

one correct equation (not involving p )     (A1)

eg 3 + 2 t = 3 ,   1 2 s = 3 ,   4 t = 1 ,   3 + s = 1

correct equation (with p )     A1

eg 2 + t = p ,   3 s = p

correct working to solve for p     (A1)

eg 7 = 2 p 3 ,   6 = 1 + p

 

p = 5 ( accept  ( 3 1 5 ) )     A1     N2

 

[5 marks]

b.

valid approach to find DC or CD     (M1)

 

eg ( 3 1 5 ) ( q 2 0 q ) ,   ( q 2 0 q ) ( 3 1 5 ) ,   ( q 2 0 q ) ( 3 1 p )

 

correct vector for DC or CD  (may be seen in scalar product)     A1

 

eg ( 3 q 2 1 5 q ) ,   ( q 2 3 1 q 5 ) ,   ( 3 q 2 1 p q )

 

recognizing scalar product of DC or CD with direction vector of L is zero (seen anywhere)     (M1)

 

eg ( 3 q 2 1 p q ) ( 2 1 1 ) = 0 ,   DC AC = 0 ,   ( 3 q 2 1 5 q ) ( 2 1 1 ) = 0

 

correct scalar product in terms of only q     A1

eg 6 2 q 2 1 + 5 q ,   2 q 2 + q 10 = 0 ,   2 ( 3 q 2 ) 1 + 5 q

correct working to solve quadratic     (A1)

eg ( 2 q + 5 ) ( q 2 ) ,   1 ± 1 4 ( 2 ) ( 10 ) 2 ( 2 )

q = 5 2 ,   2     A1A1     N3

 

[7 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry

View options