User interface language: English | Español

Date May 2021 Marks available 4 Reference code 21M.1.AHL.TZ2.5
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Show that Question number 5 Adapted from N/A

Question

Given any two non-zero vectors, a and b, show that a×b2=a2b2-a·b2.

Markscheme

METHOD 1

use of a×b=absinθ on the LHS            (M1)

a×b2=a2b2sin2θ                   A1

=a2b21-cos2θ            M1

=a2b2-a2b2cos2θ  OR  =a2b2-abcosθ2                   A1

=a2b2-a·b2                   AG

 

METHOD 2

use of a·b=abcosθ on the RHS            (M1)

=a2b2-a2b2cos2θ                   A1

=a2b21-cos2θ            M1

=a2b2sin2θ  OR  =absinθ2                   A1

=a×b2                   AG

 

Note: If candidates attempt this question using cartesian vectors, e.g

a=a1a2a3  and  b=b1b2b3,

award full marks if fully developed solutions are seen.
Otherwise award no marks.

 

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Topic 3— Geometry and trigonometry

View options