User interface language: English | Español

Date November Example questions Marks available 4 Reference code EXN.2.AHL.TZ0.11
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 11 Adapted from N/A

Question

The points A5,-2,5, B5,4,-1, C-1,-2,-1 and D7,-4,-3 are the vertices of a right-pyramid.

The line L passes through the point D and is perpendicular to Π.

Find the vectors AB and AC.

[2]
a.

Use a vector method to show that BA^C=60°.

[3]
b.

Show that the Cartesian equation of the plane Π that contains the triangle ABC is -x+y+z=-2.

[3]
c.

Find a vector equation of the line L.

[1]
d.i.

Hence determine the minimum distance, dmin, from D to Π.

[4]
d.ii.

Find the volume of right-pyramid ABCD.

[4]
e.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

 

AB=06-6 =601-1        A1

AC=-60-6 =6-10-1        A1

 

[2 marks]

a.

attempts to use  cosBA^C=AB·ACABAC        (M1)

=06-6·-60-672×72        A1

=12        A1

so BA^C=60°        AG

 

[3 marks]

b.

attempts to find a vector normal to Π        M1

for example, AB×AC=-363636 =36-111 leading to        A1

a vector normal to Π is n=-111

 

EITHER

substitutes 5,-2,-5 (or 5,4,-1 or -1,-2,-1) into -x+y+z=d and attempts to find the value of d

for example, d=-5-2+5 =-2        M1

 

OR

attempts to use r·n=a·n        M1

for example, xyz·-111=5-25·-111

 

THEN

leading to the Cartesian equation of Π as -x+y+z=-2        AG

 

[3 marks]

c.

r=7-4-3+λ-111 λ        A1

 

[1 mark]

d.i.

substitutes x=7-λ, y=-4+λ, z=-3+λ into -x+y+z=-2        (M1)

-7-λ+-4+λ+-3+λ=-2 3λ=12

λ=4        A1

shows a correct calculation for finding dmin, for example, attempts to find

4-111        M1

dmin=43 =6.93        A1

 

[4 marks]

d.ii.

let the area of triangle ABC be A

 

EITHER

attempts to find A=12AB×AC, for example       M1

A=12-363636

 

OR

attempts to find 12ABACsinθ, for example       M1

A=12×62×62×32  (where sinπ3=32)

 

THEN

A=183 =31.2       A1

uses V=13Ah where A is the area of triangle ABC and h=dmin       M1

 V=13×183×43

=72       A1

 

[4 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.
[N/A]
e.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.12—Vector definitions
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Topic 3— Geometry and trigonometry » AHL 3.17—Vector equations of a plane
Topic 3— Geometry and trigonometry » AHL 3.18—Intersections of lines & planes
Topic 3— Geometry and trigonometry

View options