Processing math: 100%

User interface language: English | Español

Date November 2017 Marks available 2 Reference code 17N.2.SL.TZ0.S_3
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number S_3 Adapted from N/A

Question

Let AB=(412).

Find |AB|.

[2]
a.

Let AC=(300). Find BˆAC.

[4]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

correct substitution     (A1)

eg42+12+22

4.58257

|AB|=21 (exact), 4.58     A1     N2

[2 marks]

a.

finding scalar product and |AC|     (A1)(A1)

scalar product =(4×3)+(1×0)+(2×0) (=12)

|AC|=32+0+0 (=3)

substituting their values into cosine formula     (M1)

eg cos BˆAC = 4×3+0+032×21, 421, cosθ=0.873

0.509739 (29.2059°)

BˆAC=0.510 (29.2°)     A1     N2

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.12—Vector definitions
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Topic 3— Geometry and trigonometry

View options