User interface language: English | Español

Date November 2016 Marks available 4 Reference code 16N.1.SL.TZ0.S_4
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_4 Adapted from N/A

Question

The position vectors of points P and Q are i ++ 2 j  k and 7i ++ 3j  4k respectively.

Find a vector equation of the line that passes through P and Q.

[4]
a.

The line through P and Q is perpendicular to the vector 2i ++ nk. Find the value of nn.

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

valid attempt to find direction vector     (M1)

egPQ, QPPQ, QP

correct direction vector (or multiple of)     (A1)

eg6i ++ j  3k

any correct equation in the form r == a ++ tb (any parameter for tt)     A2     N3

where a is i ++ 2j  k or 7i ++ 3j  4k , and b is a scalar multiple of 6i ++ j  3k

egr == 7i ++ 3j  4k ++ t(6i ++ j  3k), r =(1+6s2+1s13s), r=(121)+t(613)=1+6s2+1s13s, r=121+t613

 

Notes: Award A1 for the form a ++ tb, A1 for the form L == a ++ tb, A0 for the form r == b ++ ta.

 

[4 marks]

a.

correct expression for scalar product     (A1)

eg6×2+1×0+(3)×n, 3n+126×2+1×0+(3)×n, 3n+12

setting scalar product equal to zero (seen anywhere)     (M1)

egu  v =0, 3n+12=0

n=4    A1     N2

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry

View options