User interface language: English | Español

Date November 2017 Marks available 1 Reference code 17N.1.SL.TZ0.S_9
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Show that Question number S_9 Adapted from N/A

Question

A line LL passes through points A(3, 4, 2)A(3, 4, 2) and B(1, 3, 3)B(1, 3, 3).

The line LL also passes through the point C(3, 1, p)C(3, 1, p).

Show that AB=(211)AB=211.

[1]
a.i.

Find a vector equation for LL.

[2]
a.ii.

Find the value of pp.

[5]
b.

The point D has coordinates (q2, 0, q)(q2, 0, q). Given that DCDC is perpendicular to LL, find the possible values of qq.

[7]
c.

Markscheme

correct approach     A1

 

eg(133)(342), (342)+(133)133342, 342+133

 

AB=(211)AB=211    AG     N0

[1 mark]

a.i.

any correct equation in the form r=a+tbr=a+tb (any parameter for tt)

 

where aa is (342)342 or (133)133 and bb is a scalar multiple of (211)211     A2     N2

 

egr=(342)+t(211), (x, y, z)=(1, 3, 3)+s(2, 1, 1), r=(3+2t4t2+t)r=342+t211, (x, y, z)=(1, 3, 3)+s(2, 1, 1), r=3+2t4t2+t

 

Note:     Award A1 for the form a+tba+tb, A1 for the form L=a+tbL=a+tb, A0 for the form r=b+tar=b+ta.

 

[2 marks]

a.ii.

METHOD 1 – finding value of parameter

valid approach     (M1)

 

eg(342)+t(211)=(31p), (1, 3, 3)+s(2, 1, 1)=(3, 1, p)342+t211=31p, (1, 3, 3)+s(2, 1, 1)=(3, 1, p)

 

one correct equation (not involving pp)     (A1)

eg3+2t=3, 12s=3, 4t=1, 3+s=13+2t=3, 12s=3, 4t=1, 3+s=1

correct parameter from their equation (may be seen in substitution)     A1

egt=3, s=2t=3, s=2

correct substitution     (A1)

 

eg(342)+3(211)=(31p), 3(2)342+3211=31p, 3(2)

 

p=5(accept (315))p=5accept 315     A1     N2

 

METHOD 2 – eliminating parameter

valid approach     (M1)

 

eg(342)+t(211)=(31p), (1, 3, 3)+s(2, 1, 1)=(3, 1, p)342+t211=31p, (1, 3, 3)+s(2, 1, 1)=(3, 1, p)

 

one correct equation (not involving pp)     (A1)

eg3+2t=3, 12s=3, 4t=1, 3+s=13+2t=3, 12s=3, 4t=1, 3+s=1

correct equation (with pp)     A1

eg2+t=p, 3s=p2+t=p, 3s=p

correct working to solve for pp     (A1)

eg7=2p3, 6=1+p7=2p3, 6=1+p

 

p=5(accept (315))p=5accept 315     A1     N2

 

[5 marks]

b.

valid approach to find DCDC or CDCD     (M1)

 

eg(315)(q20q), (q20q)(315), (q20q)(31p)315q20q, q20q315, q20q31p

 

correct vector for DCDC or CDCD (may be seen in scalar product)     A1

 

eg(3q215q), (q231q5), (3q21pq)3q215q, q231q5, 3q21pq

 

recognizing scalar product of DCDC or CDCD with direction vector of LL is zero (seen anywhere)     (M1)

 

eg(3q21pq)(211)=0, DCAC=0, (3q215q)(211)=03q21pq211=0, DCAC=0, 3q215q211=0

 

correct scalar product in terms of only q     A1

eg62q21+5q, 2q2+q10=0, 2(3q2)1+5q

correct working to solve quadratic     (A1)

eg(2q+5)(q2), 1±14(2)(10)2(2)

q=52, 2     A1A1     N3

 

[7 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry

View options