Date | November 2017 | Marks available | 1 | Reference code | 17N.1.SL.TZ0.S_9 |
Level | Standard Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 0 |
Command term | Show that | Question number | S_9 | Adapted from | N/A |
Question
A line LL passes through points A(−3, 4, 2)A(−3, 4, 2) and B(−1, 3, 3)B(−1, 3, 3).
The line LL also passes through the point C(3, 1, p)C(3, 1, p).
Show that →AB=(2−11)−−→AB=⎛⎜⎝2−11⎞⎟⎠.
Find a vector equation for LL.
Find the value of pp.
The point D has coordinates (q2, 0, q)(q2, 0, q). Given that →DC−−→DC is perpendicular to LL, find the possible values of qq.
Markscheme
correct approach A1
eg(−133)−(−342), (3−4−2)+(−133)⎛⎜⎝−133⎞⎟⎠−⎛⎜⎝−342⎞⎟⎠, ⎛⎜⎝3−4−2⎞⎟⎠+⎛⎜⎝−133⎞⎟⎠
→AB=(2−11)−−→AB=⎛⎜⎝2−11⎞⎟⎠ AG N0
[1 mark]
any correct equation in the form r=a+tbr=a+tb (any parameter for tt)
where aa is (−342)⎛⎜⎝−342⎞⎟⎠ or (−133)⎛⎜⎝−133⎞⎟⎠ and bb is a scalar multiple of (2−11)⎛⎜⎝2−11⎞⎟⎠ A2 N2
egr=(−342)+t(2−11), (x, y, z)=(−1, 3, 3)+s(−2, 1, −1), r=(−3+2t4−t2+t)r=⎛⎜⎝−342⎞⎟⎠+t⎛⎜⎝2−11⎞⎟⎠, (x, y, z)=(−1, 3, 3)+s(−2, 1, −1), r=⎛⎜⎝−3+2t4−t2+t⎞⎟⎠
Note: Award A1 for the form a+tba+tb, A1 for the form L=a+tbL=a+tb, A0 for the form r=b+tar=b+ta.
[2 marks]
METHOD 1 – finding value of parameter
valid approach (M1)
eg(−342)+t(2−11)=(31p), (−1, 3, 3)+s(−2, 1, −1)=(3, 1, p)⎛⎜⎝−342⎞⎟⎠+t⎛⎜⎝2−11⎞⎟⎠=⎛⎜⎝31p⎞⎟⎠, (−1, 3, 3)+s(−2, 1, −1)=(3, 1, p)
one correct equation (not involving pp) (A1)
eg−3+2t=3, −1−2s=3, 4−t=1, 3+s=1−3+2t=3, −1−2s=3, 4−t=1, 3+s=1
correct parameter from their equation (may be seen in substitution) A1
egt=3, s=−2t=3, s=−2
correct substitution (A1)
eg(−342)+3(2−11)=(31p), 3−(−2)⎛⎜⎝−342⎞⎟⎠+3⎛⎜⎝2−11⎞⎟⎠=⎛⎜⎝31p⎞⎟⎠, 3−(−2)
p=5(accept (315))p=5⎛⎜⎝accept ⎛⎜⎝315⎞⎟⎠⎞⎟⎠ A1 N2
METHOD 2 – eliminating parameter
valid approach (M1)
eg(−342)+t(2−11)=(31p), (−1, 3, 3)+s(−2, 1, −1)=(3, 1, p)⎛⎜⎝−342⎞⎟⎠+t⎛⎜⎝2−11⎞⎟⎠=⎛⎜⎝31p⎞⎟⎠, (−1, 3, 3)+s(−2, 1, −1)=(3, 1, p)
one correct equation (not involving pp) (A1)
eg−3+2t=3, −1−2s=3, 4−t=1, 3+s=1−3+2t=3, −1−2s=3, 4−t=1, 3+s=1
correct equation (with pp) A1
eg2+t=p, 3−s=p2+t=p, 3−s=p
correct working to solve for pp (A1)
eg7=2p−3, 6=1+p7=2p−3, 6=1+p
p=5(accept (315))p=5⎛⎜⎝accept ⎛⎜⎝315⎞⎟⎠⎞⎟⎠ A1 N2
[5 marks]
valid approach to find →DC−−→DC or →CD−−→CD (M1)
eg(315)−(q20q), (q20q)−(315), (q20q)−(31p)⎛⎜⎝315⎞⎟⎠−⎛⎜⎝q20q⎞⎟⎠, ⎛⎜⎝q20q⎞⎟⎠−⎛⎜⎝315⎞⎟⎠, ⎛⎜⎝q20q⎞⎟⎠−⎛⎜⎝31p⎞⎟⎠
correct vector for →DC−−→DC or →CD−−→CD (may be seen in scalar product) A1
eg(3−q215−q), (q2−3−1q−5), (3−q21p−q)⎛⎜⎝3−q215−q⎞⎟⎠, ⎛⎜⎝q2−3−1q−5⎞⎟⎠, ⎛⎜⎝3−q21p−q⎞⎟⎠
recognizing scalar product of →DC−−→DC or →CD−−→CD with direction vector of LL is zero (seen anywhere) (M1)
eg(3−q21p−q)∙(2−11)=0, →DC∙→AC=0, (3−q215−q)∙(2−11)=0⎛⎜⎝3−q21p−q⎞⎟⎠∙⎛⎜⎝2−11⎞⎟⎠=0, −−→DC∙−−→AC=0, ⎛⎜⎝3−q215−q⎞⎟⎠∙⎛⎜⎝2−11⎞⎟⎠=0
correct scalar product in terms of only q A1
eg6−2q2−1+5−q, 2q2+q−10=0, 2(3−q2)−1+5−q
correct working to solve quadratic (A1)
eg(2q+5)(q−2), −1±√1−4(2)(−10)2(2)
q=−52, 2 A1A1 N3
[7 marks]