User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.1.SL.TZ1.S_6
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find Question number S_6 Adapted from N/A

Question

Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.
This is shown in the following diagram.

The vectors p , q and r are shown on the diagram.

Find p•(p + q + r).

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1 (using |p| |2q| cosθ)

finding p + q + r      (A1)

eg  2q

p + q + | = 2 × 3 (= 6)  (seen anywhere)     A1

correct angle between p and q (seen anywhere)      (A1)

π 3   (accept 60°)

substitution of their values     (M1)

eg  3 × 6 × cos ( π 3 )

correct value for cos ( π 3 )  (seen anywhere)     (A1)

eg   1 2 , 3 × 6 × 1 2

p•(p + q + r) = 9     A1 N3

 

METHOD 2 (scalar product using distributive law)

correct expression for scalar distribution      (A1)

eg  p• p + pq + pr

three correct angles between the vector pairs (seen anywhere)      (A2)

eg  0° between p and p π 3 between p and q 2 π 3 between p and r

Note: Award A1 for only two correct angles.

substitution of their values      (M1)

eg  3.3.cos0 +3.3.cos π 3 + 3.3.cos120

one correct value for cos0, cos ( π 3 ) or cos ( 2 π 3 )  (seen anywhere)      A1

eg   1 2 , 3 × 6 × 1 2

p•(p + q + r) = 9     A1 N3

 

METHOD 3 (scalar product using relative position vectors)

valid attempt to find one component of p or r      (M1)

eg   sin 60 =  x 3 , cos 60 =  x 3 , one correct value  3 2 , 3 3 2 , 3 3 2

one correct vector (two or three dimensions) (seen anywhere)      A1

eg  p = ( 3 2 3 3 2 ) , q = ( 3 0 ) , r = ( 3 2 3 3 2 0 )

three correct vectors p + q + = 2q     (A1)

p + q +  ( 6 0 ) or  ( 6 0 0 )  (seen anywhere, including scalar product)      (A1)

correct working       (A1)
eg   ( 3 2 × 6 ) + ( 3 3 2 × 0 ) , 9 + 0 + 0

p•(p + q + r) = 9     A1 N3

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Show 77 related questions
Topic 3— Geometry and trigonometry

View options