User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.1.SL.TZ1.S_8
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find and Hence or otherwise Question number S_8 Adapted from N/A

Question

A line L 1 passes through the points A ( 0 ,   1 ,   8 ) and B ( 3 ,   5 ,   2 ) .

Given that L 1 and L 2 are perpendicular, show that p = 2 .

Find A B .

[2]
a.i.

Hence, write down a vector equation for L 1 .

[2]
a.ii.

A second line L 2 , has equation r = ( 1 13 14 ) + s ( p 0 1 ) .

Given that L 1 and L 2 are perpendicular, show that p = 2 .

[3]
b.

The lines L 1 and L 1 intersect at C ( 9 ,   13 ,   z ) . Find z .

[5]
c.

Find a unit vector in the direction of L 2 .

[2]
d.i.

Hence or otherwise, find one point on L 2 which is 5 units from C.

[3]
d.ii.

Markscheme

valid approach     (M1)

eg   A B , ( 0 1 8 ) + ( 3 5 2 )

A B = ( 3 4 6 )     A1     N2

[2 marks]

a.i.

any correct equation in the form r = a + tb (any parameter for t )     A2     N2

where a is  ( 0 1 8 ) or  ( 3 5 2 ) , and is a scalar multiple of  ( 3 4 6 )

 

eg r = ( 0 1 8 ) + t ( 3 4 6 ) , r = ( 3 + 3 t 5 + 4 t 2 6 t ) , r = j + 8k + t(3i + 4j – 6k)

 

Note:     Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form r = b + ta.

 

[2 marks]

a.ii.

valid approach     (M1)

eg a b = 0

choosing correct direction vectors (may be seen in scalar product)     A1

eg ( 3 4 6 ) and ( p 0 1 ) ,   ( 3 4 6 ) ( p 0 1 ) = 0

correct working/equation     A1

eg 3 p 6 = 0

p = 2     AG     N0

[3 marks]

b.

valid approach     (M1)

eg L 1 = ( 9 13 z ) ,   L 1 = L 2

one correct equation (must be different parameters if both lines used)     (A1)

eg 3 t = 9 ,   1 + 2 s = 9 ,   5 + 4 t = 13 ,   3 t = 1 + 2 s

one correct value     A1

eg t = 3 ,   s = 4 ,   t = 2

valid approach to substitute their t or s value     (M1)

eg 8 + 3 ( 6 ) ,   14 + 4 ( 1 )

z = 10     A1     N3

[5 marks]

c.

| d | = 2 2 + 1 ( = 5 )     (A1)

1 5 ( 2 0 1 ) ( accept ( 2 5 0 5 1 5 ) )     A1     N2

[2 marks]

d.i.

METHOD 1 (using unit vector) 

valid approach     (M1)

eg ( 9 13 10 ) ± 5 d ^

correct working     (A1)

eg ( 9 13 10 ) + ( 2 0 1 ) ,   ( 9 13 10 ) ( 2 0 1 )

one correct point     A1     N2

eg ( 11 ,   13 ,   9 ) ,   ( 7 ,   13 ,   11 )

METHOD 2 (distance between points) 

attempt to use distance between ( 1 + 2 s ,   13 ,   14 + s ) and ( 9 ,   13 ,   10 )     (M1)

eg ( 2 s 8 ) 2 + 0 2 + ( s 4 ) 2 = 5

solving 5 s 2 40 s + 75 = 0 leading to s = 5 or s = 3     (A1)

one correct point     A1     N2

eg ( 11 ,   13 ,   9 ) ,   ( 7 ,   13 ,   11 )

[3 marks]

d.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.12—Vector definitions
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry » AHL 3.15—Classification of lines
Topic 3— Geometry and trigonometry

View options