Date | May 2017 | Marks available | 3 | Reference code | 17M.1.SL.TZ1.S_8 |
Level | Standard Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 1 |
Command term | Find and Hence or otherwise | Question number | S_8 | Adapted from | N/A |
Question
A line L1L1 passes through the points A(0, 1, 8)A(0, 1, 8) and B(3, 5, 2)B(3, 5, 2).
Given that L1L1 and L2L2 are perpendicular, show that p=2p=2.
Find →AB−−→AB.
Hence, write down a vector equation for L1L1.
A second line L2L2, has equation r = (113−14)+s(p01)⎛⎜⎝113−14⎞⎟⎠+s⎛⎜⎝p01⎞⎟⎠.
Given that L1L1 and L2L2 are perpendicular, show that p=2p=2.
The lines L1L1 and L1L1 intersect at C(9, 13, z)C(9, 13, z). Find zz.
Find a unit vector in the direction of L2L2.
Hence or otherwise, find one point on L2L2 which is √5√5 units from C.
Markscheme
valid approach (M1)
eg A−B,−(018)+(352)A−B,−⎛⎝018⎞⎠+⎛⎝352⎞⎠
→AB=(34−6)−−→AB=⎛⎝34−6⎞⎠ A1 N2
[2 marks]
any correct equation in the form r = a + tb (any parameter for tt) A2 N2
where a is (018)⎛⎝018⎞⎠ or (352)⎛⎝352⎞⎠, and b is a scalar multiple of (34−6)⎛⎝34−6⎞⎠
egr = (018)+t(34−6)⎛⎜⎝018⎞⎟⎠+t⎛⎜⎝34−6⎞⎟⎠, r = (3+3t5+4t2−6t)⎛⎜⎝3+3t5+4t2−6t⎞⎟⎠, r = j + 8k + t(3i + 4j – 6k)
Note: Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form r = b + ta.
[2 marks]
valid approach (M1)
ega∙b=0a∙b=0
choosing correct direction vectors (may be seen in scalar product) A1
eg(34−6)⎛⎜⎝34−6⎞⎟⎠ and (p01), (34−6)∙(p01)=0⎛⎜⎝p01⎞⎟⎠, ⎛⎜⎝34−6⎞⎟⎠∙⎛⎜⎝p01⎞⎟⎠=0
correct working/equation A1
eg3p−6=03p−6=0
p=2p=2 AG N0
[3 marks]
valid approach (M1)
egL1=(913z), L1=L2L1=⎛⎜⎝913z⎞⎟⎠, L1=L2
one correct equation (must be different parameters if both lines used) (A1)
eg3t=9, 1+2s=9, 5+4t=13, 3t=1+2s3t=9, 1+2s=9, 5+4t=13, 3t=1+2s
one correct value A1
egt=3, s=4, t=2t=3, s=4, t=2
valid approach to substitute their tt or ss value (M1)
eg8+3(−6), −14+4(1)8+3(−6), −14+4(1)
z=−10z=−10 A1 N3
[5 marks]
|→d|=√22+1(=√5)∣∣→d∣∣=√22+1(=√5) (A1)
1√5(201)(accept(2√50√51√5))1√5⎛⎜⎝201⎞⎟⎠⎛⎜ ⎜ ⎜ ⎜⎝accept⎛⎜ ⎜ ⎜ ⎜⎝2√50√51√5⎞⎟ ⎟ ⎟ ⎟⎠⎞⎟ ⎟ ⎟ ⎟⎠ A1 N2
[2 marks]
METHOD 1 (using unit vector)
valid approach (M1)
eg(913−10)±√5ˆd⎛⎜⎝913−10⎞⎟⎠±√5^d
correct working (A1)
eg(913−10)+(201), (913−10)−(201)⎛⎜⎝913−10⎞⎟⎠+⎛⎜⎝201⎞⎟⎠, ⎛⎜⎝913−10⎞⎟⎠−⎛⎜⎝201⎞⎟⎠
one correct point A1 N2
eg(11, 13, −9), (7, 13, −11)(11, 13, −9), (7, 13, −11)
METHOD 2 (distance between points)
attempt to use distance between (1+2s, 13, −14+s)(1+2s, 13, −14+s) and (9, 13, −10)(9, 13, −10) (M1)
eg(2s−8)2+02+(s−4)2=5(2s−8)2+02+(s−4)2=5
solving 5s2−40s+75=05s2−40s+75=0 leading to s=5s=5 or s=3s=3 (A1)
one correct point A1 N2
eg(11, 13, −9), (7, 13, −11)(11, 13, −9), (7, 13, −11)
[3 marks]