User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.1.SL.TZ1.S_8
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find and Hence or otherwise Question number S_8 Adapted from N/A

Question

A line L1L1 passes through the points A(0, 1, 8)A(0, 1, 8) and B(3, 5, 2)B(3, 5, 2).

Given that L1L1 and L2L2 are perpendicular, show that p=2p=2.

Find ABAB.

[2]
a.i.

Hence, write down a vector equation for L1L1.

[2]
a.ii.

A second line L2L2, has equation r = (11314)+s(p01)11314+sp01.

Given that L1L1 and L2L2 are perpendicular, show that p=2p=2.

[3]
b.

The lines L1L1 and L1L1 intersect at C(9, 13, z)C(9, 13, z). Find zz.

[5]
c.

Find a unit vector in the direction of L2L2.

[2]
d.i.

Hence or otherwise, find one point on L2L2 which is 55 units from C.

[3]
d.ii.

Markscheme

valid approach     (M1)

eg  AB,(018)+(352)AB,018+352

AB=(346)AB=346    A1     N2

[2 marks]

a.i.

any correct equation in the form r = a + tb (any parameter for tt)     A2     N2

where a is (018)018 or (352)352, and is a scalar multiple of (346)346

 

egr = (018)+t(346)018+t346, r = (3+3t5+4t26t)3+3t5+4t26t, r = j + 8k + t(3i + 4j – 6k)

 

Note:     Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form r = b + ta.

 

[2 marks]

a.ii.

valid approach     (M1)

egab=0ab=0

choosing correct direction vectors (may be seen in scalar product)     A1

eg(346)346 and (p01), (346)(p01)=0p01, 346p01=0

correct working/equation     A1

eg3p6=03p6=0

p=2p=2     AG     N0

[3 marks]

b.

valid approach     (M1)

egL1=(913z), L1=L2L1=913z, L1=L2

one correct equation (must be different parameters if both lines used)     (A1)

eg3t=9, 1+2s=9, 5+4t=13, 3t=1+2s3t=9, 1+2s=9, 5+4t=13, 3t=1+2s

one correct value     A1

egt=3, s=4, t=2t=3, s=4, t=2

valid approach to substitute their tt or ss value     (M1)

eg8+3(6), 14+4(1)8+3(6), 14+4(1)

z=10z=10     A1     N3

[5 marks]

c.

|d|=22+1(=5)d=22+1(=5)    (A1)

15(201)(accept(250515))15201⎜ ⎜ ⎜ ⎜accept⎜ ⎜ ⎜ ⎜250515⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟     A1     N2

[2 marks]

d.i.

METHOD 1 (using unit vector) 

valid approach     (M1)

eg(91310)±5ˆd91310±5^d

correct working     (A1)

eg(91310)+(201), (91310)(201)91310+201, 91310201

one correct point     A1     N2

eg(11, 13, 9), (7, 13, 11)(11, 13, 9), (7, 13, 11)

METHOD 2 (distance between points) 

attempt to use distance between (1+2s, 13, 14+s)(1+2s, 13, 14+s) and (9, 13, 10)(9, 13, 10)     (M1)

eg(2s8)2+02+(s4)2=5(2s8)2+02+(s4)2=5

solving 5s240s+75=05s240s+75=0 leading to s=5s=5 or s=3s=3     (A1)

one correct point     A1     N2

eg(11, 13, 9), (7, 13, 11)(11, 13, 9), (7, 13, 11)

[3 marks]

d.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.12—Vector definitions
Show 77 related questions
Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry » AHL 3.15—Classification of lines
Topic 3— Geometry and trigonometry

View options