Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date November 2018 Marks available 6 Reference code 18N.1.SL.TZ0.S_5
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_5 Adapted from N/A

Question

Consider the vectors a(32p) and b = (p+18).

Find the possible values of p for which a and b are parallel.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1 (eliminating k)

recognizing parallel vectors are multiples of each other      (M1)

eg   a = kb,  (32p)k(p+18),  p+13=82p,  3k = p + 1 and 2kp = 8

correct working (must be quadratic)       (A1)

eg   2p2 + 2p = 24,  p2 + p – 12,  3=p2+p4

valid attempt to solve their quadratic equation       (M1)

eg   factorizing, formula, completing the square

evidence of correct working      (A1)

eg   (p + 4)(p – 3), x=2±44(2)(24)4

p = –4,  p = 3     A1A1 N4

 

METHOD 2 (solving for k)

recognizing parallel vectors are multiples of each other      (M1)

eg   a = kb,  (32p) = k(p+18),  3k = p + 1 and 2kp = 8

correct working (must be quadratic)       (A1)

eg   3k2 – k = 4,  3k2 – k – 4,  4k2 = 3 – k

one correct value for k      (A1)

eg   k = –1, k = 43,  k = 34

substituting their value(s) of k      (M1)

eg   (32p)=34(p+18),  3(43)=p+1 and 2(43)p=8,  (1)(32p)=(p+18)

p = –4,  p = 3     A1A1 N4

 

METHOD 3 (working with angles and cosine formula)

recognizing angle between parallel vectors is 0 and/or 180°      M1

eg   cos θ = ±1,  ab=|a||b|

correct substitution of scalar product and magnitudes into equation      (A1)

eg  3(p+1)+2p(8)32+(2p)2(p+1)2+82=±1,  19p+3=4p2+9p2+2p+65

correct working (must include both ± )      (A1)

eg  3(p+1)+2p(8)=±32+(2p)2(p+1)2+82,  19p+3=±4p2+9p2+2p+65

correct quartic equation      (A1)

eg   361p2+114p+9=4p4+8p3+269p2+18p+585,  4p4+8p392p296p+576=0,  p4+2p323p224p+144=0,   (p+4)2(p3)2=0

p = –4,  p = 3     A2 N4

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2—Functions » SL 2.7—Solutions of quadratic equations and inequalities, discriminant and nature of roots
Show 47 related questions
Topic 2—Functions » SL 2.10—Solving equations graphically and analytically
Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Topic 2—Functions
Topic 3— Geometry and trigonometry

View options