User interface language: English | Español

Date May 2021 Marks available 7 Reference code 21M.1.AHL.TZ1.11
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find Question number 11 Adapted from N/A

Question

Consider the line L1 defined by the Cartesian equation x+12=y=3-z.

Consider a second line L2 defined by the vector equation r=012+ta1-1, where t and a.

Show that the point (-1, 0, 3) lies on L1.

[1]
a.i.

Find a vector equation of L1.

[3]
a.ii.

Find the possible values of a when the acute angle between L1 and L2 is 45°.

[8]
b.

It is given that the lines L1 and L2 have a unique point of intersection, A, when ak.

Find the value of k, and find the coordinates of the point A in terms of a.

[7]
c.

Markscheme

-1+12=0=3-3          A1

the point (-1, 0, 3) lies on L1.          AG

 

[1 mark]

a.i.

attempt to set equal to a parameter or rearrange cartesian form          (M1)

x+12=y=3-z=λx=2λ-1, y=λ, z=3-λ  OR  x+12=y-01=z-3-1

correct direction vector 21-1 or equivalent seen in vector form          (A1)

r=-103+λ21-1 (or equivalent)          A1

 

Note: Award A0 if =r is omitted.

 

[3 marks]

a.ii.

attempt to use the scalar product formula          (M1)

21-1a1-1=±6a2+2cos45°          (A1)(A1)

 

Note: Award A1 for LHS and A1 for RHS

 

2a+2=±6a2+2222a+2=±3a2+2         A1A1

 

Note: Award A1 for LHS and A1 for RHS

 

4a2+8a+4=3a2+6         A1

a2+8a-2=0        M1

attempt to solve their quadratic

a=-8±64+82=-8±722=-4±32         A1

 

[8 marks]

b.

METHOD 1

attempt to equate the parametric forms of L1 and L2         (M1)

2λ-1=taλ=1+t3-λ=2-t         A1

attempt to solve equations by eliminating λ or t         (M1)

2+2t-1=ta1=ta-2  or  2λ-1=λ-1aa-1=λa-2

Solutions exist unless a-2=0

k=2         A1

 

Note: This A1 is independent of the following marks.

 

t=1a-2  or  λ=a-1a-2         A1

A has coordinates aa-2, 1+1a-2, 2-1a-2 =aa-2, a-1a-2, 2a-5a-2         A2

 

Note: Award A1 for any two correct coordinates seen or final answer in vector form.

 

 

METHOD 2

no unique point of intersection implies direction vectors of L1 and L2 parallel

k=2         A1

 

Note: This A1 is independent of the following marks.

 

attempt to equate the parametric forms of L1 and L2         (M1)

2λ-1=taλ=1+t3-λ=2-t         A1

attempt to solve equations by eliminating λ or t         (M1)

2+2t-1=ta1=ta-2  or  2λ-1=λ-1aa-1=λa-2

t=1a-2  or  λ=a-1a-2         A1

A has coordinates aa-2, 1+1a-2, 2-1a-2 =aa-2, a-1a-2, 2a-5a-2         A2

 

Note: Award A1 for any two correct coordinates seen or final answer in vector form.

 

[7 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Show 98 related questions
Topic 3— Geometry and trigonometry » AHL 3.15—Classification of lines
Topic 3— Geometry and trigonometry

View options