User interface language: English | Español

Date May 2019 Marks available 2 Reference code 19M.1.AHL.TZ1.H_11
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find Question number H_11 Adapted from N/A

Question

Two distinct lines, l1l1 and l2l2, intersect at a point PP. In addition to PP, four distinct points are marked out on l1l1 and three distinct points on l2l2. A mathematician decides to join some of these eight points to form polygons.

The line l1l1 has vector equation r1 =(101)+λ(121)=101+λ121λR and the line l2 has vector equation r2 =(102)+μ(562)μR.

The point P has coordinates (4, 6, 4).

The point A has coordinates (3, 4, 3) and lies on l1.

The point B has coordinates (−1, 0, 2) and lies on l2.

Find how many sets of four points can be selected which can form the vertices of a quadrilateral.

[2]
a.i.

Find how many sets of three points can be selected which can form the vertices of a triangle.

[4]
a.ii.

Verify that P is the point of intersection of the two lines.

[3]
b.

Write down the value of λ corresponding to the point A.

[1]
c.

Write down PA and PB.

[2]
d.

Let C be the point on l1 with coordinates (1, 0, 1) and D be the point on l2 with parameter μ=2.

Find the area of the quadrilateral CDBA.

[8]
e.

Markscheme

appreciation that two points distinct from P need to be chosen from each line   M1

4C2×3C2

=18    A1

[2 marks]

a.i.

EITHER

consider cases for triangles including P or triangles not including P      M1

3×4+4×3C2+3×4C2     (A1)(A1)

Note: Award A1 for 1st term, A1 for 2nd & 3rd term.

OR

consider total number of ways to select 3 points and subtract those with 3 points on the same line      M1

8C35C34C3     (A1)(A1)

Note: Award A1 for 1st term, A1 for 2nd & 3rd term.

56−10−4

THEN

= 42    A1

[4 marks]

a.ii.

METHOD 1

substitution of (4, 6, 4) into both equations       (M1)

λ=3 and μ=1       A1A1

(4, 6, 4)       AG

METHOD 2

attempting to solve two of the three parametric equations      M1

λ=3 and μ=1       A1

check both of the above give (4, 6, 4)       M1AG

Note: If they have shown the curve intersects for all three coordinates they only need to check (4,6,4) with one of "λ" or "μ".

[3 marks]

b.

λ=2      A1

[1 mark]

c.

PA=(121) ,  PB=(562)    A1A1

Note: Award A1A0 if both are given as coordinates.

[2 marks]

d.

METHOD 1

area triangle ABP=12|PB×PA|    M1

(=12|(562)×(121)|)=12|(234)|    A1

=292    A1

EITHER

PC=3PAPD=3PB       (M1)

area triangle PCD=9× area triangle ABP       (M1)A1

=9292    A1

OR

D has coordinates (−11, −12, −2)    A1

area triangle PCD=12|PD×PC|=12|(15186)×(363)|    M1A1

Note: A1 is for the correct vectors in the correct formula.

=9292    A1

THEN

area of CDBA=9292292

=429    A1

 

METHOD 2

D has coordinates (−11, −12, −2)    A1

area =12|CB×CA|+12|BC×BD|      M1

Note: Award M1 for use of correct formula on appropriate non-overlapping triangles.

Note: Different triangles or vectors could be used.

CB=(201)CA=(242)    A1

CB×CA=(468)    A1

BC=(201)BD=(10124)    A1

BC×BD=(121824)    A1

Note: Other vectors which might be used are DA=(14165)BA=(441)DC=(12123).

Note: Previous A1A1A1A1 are all dependent on the first M1.

valid attempt to find a value of 12|a×b|      M1

Note: M1 independent of triangle chosen.

area =12×2×29+12×6×29

=429    A1

Note: accept 12116+121044 or equivalent.

 

[8 marks]

e.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 1—Number and algebra » AHL 1.10—Perms and combs, binomial with negative and fractional indices
Show 42 related questions
Topic 3— Geometry and trigonometry » AHL 3.12—Vector definitions
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Topic 1—Number and algebra
Topic 3— Geometry and trigonometry

View options