User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.2.SL.TZ0.S_2
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Write down Question number S_2 Adapted from N/A

Question

Consider the lines L 1 and L 2 with respective equations

L 1 : y = 2 3 x + 9   and   L 2 : y = 2 5 x 19 5 .

A third line, L 3 , has gradient  3 4 .

Find the point of intersection of L 1 and L 2 .

[2]
a.

Write down a direction vector for L 3 .

[1]
b.

L 3 passes through the intersection of L 1 and L 2 .

Write down a vector equation for L 3 .

[2]
c.

Markscheme

valid approach           (M1)

eg      L 1 = L 2 x = 12 y = 1

( 12 1 )   (exact)         A1  N2

[2 marks]

a.

( 4 3 )   (or any multiple of ( 4 3 ) )       A1  N1

[1 mark]

b.

any correct equation in the form r = a + t b (accept any parameter for t ) where 
a is a position vector for a point on L 1 , and b is a scalar multiple of  ( 4 3 )        A2  N2

eg       r  = ( 12 1 ) + t ( 4 3 )

Note: Award A1 for the form a + t b, A1 for the form L = a + t b, A0 for the form r = b + t a.

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 2—Functions » SL 2.10—Solving equations graphically and analytically
Show 56 related questions
Topic 3— Geometry and trigonometry » AHL 3.12—Vector definitions
Topic 3— Geometry and trigonometry » AHL 3.14—Vector equation of line
Topic 2—Functions
Topic 3— Geometry and trigonometry

View options