Date | May 2018 | Marks available | 6 | Reference code | 18M.1.sl.TZ1.9 |
Level | SL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
Point A has coordinates (−4, −12, 1) and point B has coordinates (2, −4, −4).
The line L passes through A and B.
Show that →AB=(68−5)
Find a vector equation for L.
Point C (k , 12 , −k) is on L. Show that k = 14.
Find →OB∙→AB.
Write down the value of angle OBA.
Point D is also on L and has coordinates (8, 4, −9).
Find the area of triangle OCD.
Markscheme
correct approach A1
eg →AO+→OB,B−A, (2−4−4)−(−4−121)
→AB=(68−5) AG N0
[1 mark]
any correct equation in the form r = a + tb (any parameter for t) A2 N2
where a is (2−4−4) or (−4−121) and b is a scalar multiple of (68−5)
eg r =(−4−121)+t(68−5),(x,y,z)=(2,−4,−4)+t(6,8,−5), r =(−4+6t−12+8t1−5t)
Note: Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form r = b + ta.
[2 marks]
METHOD 1 (solving for t)
valid approach (M1)
eg (k12−k)=(2−4−4)+t(68−5),(k12−k)=(−4−121)+t(68−5)
one correct equation A1
eg −4 + 8t = 12, −12 + 8t = 12
correct value for t (A1)
eg t = 2 or 3
correct substitution A1
eg 2 + 6(2), −4 + 6(3), −[1 + 3(−5)]
k = 14 AG N0
METHOD 2 (solving simultaneously)
valid approach (M1)
eg (k12−k)=(2−4−4)+t(68−5),(k12−k)=(−4−121)+t(68−5)
two correct equations in A1
eg k = −4 + 6t, −k = 1 −5t
EITHER (eliminating k)
correct value for t (A1)
eg t = 2 or 3
correct substitution A1
eg 2 + 6(2), −4 + 6(3)
OR (eliminating t)
correct equation(s) (A1)
eg 5k + 20 = 30t and −6k − 6 = 30t, −k = 1 − 5(k+46)
correct working clearly leading to k = 14 A1
eg −k + 14 = 0, −6k = 6 −5k − 20, 5k = −20 + 6(1 + k)
THEN
k = 14 AG N0
[4 marks]
correct substitution into scalar product A1
eg (2)(6) − (4)(8) − (4)(−5), 12 − 32 + 20
→OB∙→AB = 0 A1 N0
[2 marks]
O∧BA=π2,90∘(accept3π2,270∘) A1 N1
[1 marks]
METHOD 1 (12 × height × CD)
recognizing that OB is altitude of triangle with base CD (seen anywhere) M1
eg 12×|→OB|×|→CD|,OB⊥CD, sketch showing right angle at B
→CD=(−6−85) or →DC=(68−5) (seen anywhere) (A1)
correct magnitudes (seen anywhere) (A1)(A1)
|→OB|=√(2)2+(−4)2+(−4)2=(√36)
|→CD|=√(−6)2+(−8)2+(5)2=(√125)
correct substitution into 12bh A1
eg 12×6×√125
area =3√125,15√5 A1 N3
METHOD 2 (subtracting triangles)
recognizing that OB is altitude of either ΔOBD or ΔOBC(seen anywhere) M1
eg 12×|→OB|×|→BD|,OB⊥BC, sketch of triangle showing right angle at B
one correct vector →BD or →DB or →BC or →CB (seen anywhere) (A1)
eg →BD=(68−5), →CB=(−12−1610)
|→OB|=√(2)2+(−4)2+(−4)2=(√36) (seen anywhere) (A1)
one correct magnitude of a base (seen anywhere) (A1)
|→BD|=√(6)2+(8)2+(5)2=(√125),|→BC|=√144+256+100=(√500)
correct working A1
eg 12×6×√500−12×6×5√5,12×6×√500×sin90−12×6×5√5×sin90
area =3√125,15√5 A1 N3
METHOD 3 (using 12ab sin C with ΔOCD)
two correct side lengths (seen anywhere) (A1)(A1)
|→OD|=√(8)2+(4)2+(−9)2=(√161),|→CD|=√(−6)2+(−8)2+(5)2=(√125), |→OC|=√(14)2+(12)2+(−14)2=(√536)
attempt to find cosine ratio (seen anywhere) M1
eg 536−286−2√161√125,OD∙DC|OD||DC|
correct working for sine ratio A1
eg (125)2161×125+sin2D=1
correct substitution into 12absinC A1
eg 0.5×√161×√125×6√161
area =3√125,15√5 A1 N3
[6 marks]