User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.1.sl.TZ1.8
Level SL only Paper 1 Time zone TZ1
Command term Hence and Write down Question number 8 Adapted from N/A

Question

The line \({L_1}\) passes through the points \(\rm{A}(2, 1, 4)\) and \(\rm{B}(1, 1, 5)\).

Another line \({L_2}\) has equation r = \(\left( \begin{array}{c}4\\7\\ - 4\end{array} \right) + s\left( \begin{array}{c}0\\ - 1\\1\end{array} \right)\) . The lines \({L_1}\) and \({L_2}\) intersect at the point P.

Show that \(\overrightarrow {{\text{AB}}}  = \)  \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\)

[1]
a.

Hence, write down a direction vector for \({L_1}\);

[1]
b(i).

Hence, write down a vector equation for \({L_1}\).

[2]
b(ii).

Find the coordinates of P.

[6]
c.

Write down a direction vector for \({L_2}\).

[1]
d(i).

Hence, find the angle between \({L_1}\) and \({L_2}\).

[6]
d(ii).

Markscheme

correct approach     A1

eg   \(\left( \begin{array}{c}1\\1\\5\end{array} \right) - \left( \begin{array}{l}2\\1\\4\end{array} \right)\), \({\text{AO}} + {\text{OB}}\), \(b - a\)

\(\overrightarrow {{\text{AB}}}  = \)  \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\)    AG     N0

[1 mark]

a.

correct vector (or any multiple)     A1     N1

eg     d =  \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\)

[1 mark]

b(i).

any correct equation in the form r = a + tb     (accept any parameter for t)

where a is \(\left( \begin{array}{c}2\\1\\4\end{array} \right)\) or \(\left( \begin{array}{c}1\\1\\5\end{array} \right)\) , and b is a scalar multiple of  \(\left( \begin{array}{c} - 1\\0\\1\end{array} \right)\)     A2     N2

eg   r = \(\left( \begin{array}{c}1\\1\\5\end{array} \right) + t\left( \begin{array}{c} - 1\\0\\1\end{array} \right),\left( \begin{array}{c}x\\y\\z\end{array} \right) = \left( \begin{array}{c}2 - s\\1\\4 + s\end{array} \right)\)

 

Note:     Award A1 for a + tb, A1 for \({L_1}\) = a + tb, A0 for r = b + ta.

 

[2 marks]

b(ii).

valid approach     (M1)

eg     \({r_1} = {r_2}\), \(\left( \begin{array}{c}2\\1\\4\end{array} \right) + t\left( \begin{array}{c} - 1\\0\\1\end{array} \right) = \left( \begin{array}{c}4\\7\\ - 4\end{array} \right) + s\left( \begin{array}{c}0\\ - 1\\1\end{array} \right)\)

one correct equation in one parameter     A1

eg     \(2 - t = 4, 1 = 7 - s, 1 - t = 4\)

attempt to solve     (M1)

eg     \(2 - 4 = t, s = 7 - 1, t = 1 - 4\)

one correct parameter     A1

eg     \(t = -2, s = 6, t = -3\),

attempt to substitute their parameter into vector equation     (M1)

eg     \(\left( \begin{array}{c}4\\7\\ - 4\end{array} \right) + 6\left( \begin{array}{c}0\\ - 1\\1\end{array} \right)\)

P(4, 1, 2)   (accept position vector)     A1     N2

[6 marks]

c.

correct direction vector for \({L_2}\)     A1     N1

eg     \(\left( \begin{array}{c}0\\-1\\ 1\end{array} \right)\), \(\left( \begin{array}{c}0\\2\\ - 2\end{array} \right)\)

 

[1 mark]

d(i).

correct scalar product and magnitudes for their direction vectors     (A1)(A1)(A1)

scalar product \( = 0 \times  - 1 +  - 1 \times 0 + 1 \times 1{\text{ }}( = 1)\)

magnitudes \( = \sqrt {{0^2} + {{( - 1)}^2} + {1^2}} ,{\text{ }}\sqrt { - {1^2} + {0^2} + {1^2}} \left( {\sqrt 2 ,{\text{ }}\sqrt 2 } \right)\)

attempt to substitute their values into formula     M1

eg   \(\frac{{0 + 0 + 1}}{{\left( {\sqrt {{0^2} + {{( - 1)}^2} + {1^2}} } \right) \times \left( {\sqrt { - {1^2} + {0^2} + {1^2}} } \right)}},{\text{ }}\frac{1}{{\sqrt 2  \times \sqrt 2 }}\)

correct value for cosine, \(\frac{1}{2}\)     A1

angle is \(\frac{\pi }{3}{\text{ }}( = {60^ \circ })\)     A1     N1

[6 marks]

d(ii).

Examiners report

[N/A]
a.
[N/A]
b(i).
[N/A]
b(ii).
[N/A]
c.
[N/A]
d(i).
[N/A]
d(ii).

Syllabus sections

Topic 4 - Vectors » 4.3 » Vector equation of a line in two and three dimensions: \(r = a + tb\) .
Show 66 related questions

View options